The Equation Of A Circle

Not done! Recall the distance formula

Two points (A_1, y_1) and (A_2, y_2)

or
$$d^{2} = (\chi_{2} - \chi_{1})^{2} + (\chi_{2} - \chi_{1})^{2}$$

From this we get the equation of a circle

- (i) Circle centre (0,0) and radius r
- (must know)
- (ii) Circle centre (a,b) and radius r

ex Always use this equalit $(x-a)^2 + (y-b)^2 = r^2$ (given)

when asked to find the equation of a

arcle.

(i) (V,V)

This circle is all points P(x,y) such that the distance from (0,0) is r

i.e.
$$r^2 = (x-0)^2 + (y-0)^2$$

 $r^2 = x^2 + y^2$

(ii)

This circle is all the points P(x,y) such that the distance from (a,b) is r i.e.

$$r^2 = (x-a)^2 + (y-b)^2$$

To find the equation of a circle we need:-

- the centre of the circle
- the radius of the circle

Examples

- 1) Write down the equations of the circles
 - a) centre origin, radius $\frac{3}{2}$
 - b) centre (6, -2), radius 3

(a)
$$(x-a)^{2}+(y-b)^{2}=r^{2}$$

 $(x-o)^{2}+(y-o)^{2}=(\frac{3}{2})^{2}$

$$\begin{array}{ccc} \chi_{2} + y^{2} &= \frac{q}{q} \\ (x-q)^{2} + (y-b)^{2} &= r^{2} \\ (x-6)^{2} + (y+2)^{2} &= q \\ (x-6)^{2} + (y+2)^{2} &= q \end{array}$$

NB Don't mulhply out brackets unless you need

2) Describe the circle with equation

a)
$$x^2 + y^2 = 64$$

b)
$$(x-4)^2 + (y+3)^2 = 25$$

3) Find the equation of the circle passing through the point (6,3) and has centre (3,1)

$$\Gamma = \sqrt{(6-3)^2 + (3-1)^2}$$

$$= \sqrt{9+4}$$

$$= \sqrt{13}$$

Ex 14A, pg 308 - 310

The General Equation Of A Circle

Lets take an equation of the form $x^2 + y^2 + 2gx + 2fy + c = 0$ and complete the squares in x and y:

$$(x+g)^2 + y^2 + 2fy + c = 0$$

 $(x+g)^2 - g^2 + (y+f)^2 - f^2 + c = 0$
 $(x+g)^2 + (y+f)^2 = g^2 + f^2 - c$
Compare with
 $(x-a)^2 + (y-b)^2 = f^2$

Use to find centre and radius of circle if given in multiplied withour.

3

We can see that $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle with centre (-g, -f) and radius, $r = \sqrt{g^2 + f^2 - c}$, provided $g^2 + f^2 - c > 0$. This is known as the **general** equation of a circle.

Examples

1) Describe the circle with equation $x^2 + y^2 - 4x + 8y - 16 = 0$

$$20 = -4 \qquad 2f = 8 \qquad C = -10$$

$$9 = -2 \qquad F = 4$$
Centre (2,-4)
$$7adlib \qquad J(-2) + 4 - (-16)$$

$$= \sqrt{3}6 = 6$$

2) State whether $x^2 + y^2 - 6x + 2y - 14 = 0$ represents the equation of a circle

$$2g = -6$$
 $2f = 2$ $C = -14$
 $g = -3$ $f = 1$
 $g + f^2 - C = (3)^2 + 1^2 - (-16)$
 $= 26 70$ so it does represent a circle.

3) A circle $x^2 + y^2 + 4x - 2y - 84 = 0$ has diameter AB. If A is the point (-10,-4), find the coordinates of B.

Cfe Higher Maths Unit 3 Applications

AS 1.2 Applying Algebraic Skills To Circles

4) Show that (5, $\sqrt{11}$) lies on the circle centre origin and radius 6

Circle
$$(x-a)^2 + (y-b)^2 = 1^2$$

 $(x-0)^2 + (y-0)^2 = 6^2$
 $x^2 + y^2 = 36$.
Subshibite $(5, .511)$ into LHS.
 $5^2 + (511)^2$
 $= 25 + 11$
 $= 36$ so point lies on circle.
 $= 12 + 15$

5) Does the point (-7, -9) lie inside, outside or on the circle centre (-3,-5) and radius $\sqrt{30}$?

distance from
$$(-7, -9)$$
 to $(-3, -5)$

$$d = \sqrt{(-7+3)^{2}+(-9+5)^{2}}$$

$$= \sqrt{16+16}$$

$$= \sqrt{32}$$

$$7 \sqrt{30} \quad \text{so point lies outside Circle}.$$

Intersection Of A Line And A Circle

To find the points of intersection we solve simultaneously the equation of the circle and the equation of the straight line. This results in a quadratic equation.

As with a curve and a straight line, a circle and a straight line can have

For resultant quadratic

(i) no points of contact

(ii) two points of contact

(iii) one point of contact (line is a tangent)

Examples

1) Find the points of contact of the line y = 2x + 8 and the circle $x^2 + y^2 + 4x + 2y - 20 = 0$

$$x^{2}+y^{2}+4x+2y-20=0 - - 0$$

$$y= 2x+8 - 2$$
Substitute (2) in (i) $x^{2}+(2x+8)^{2}+4x+2(2x+8)-20=0$

$$x^{2}+4x^{2}+32x+64+4x+46-20=0$$

$$5x^{2}+40x+60=0$$

$$x^{2}+8x+42=0$$

$$(x+6)(x+2)=0$$

$$(x+6)(x+2)=0$$

$$x=-6 \qquad x=-2$$

$$y=-4 \qquad y=4$$

$$y=4$$

$$y=4$$

$$y=4$$

Unit 3 AS 1.2 Applying Algebraic Skills To Circles

2) Show that 3x + y = -10 is a tangent to the circle $x^2 + y^2 - 8x + 4y - 20 = 0$ and find the point of contact.

Equation Of A Tangent At A Point On The Circle

Equation of tangent AT need (i) point on the line (ii) gradient of line A is point on the line and $m_{AT} \cdot m_{AC} = -1$ since the tangent is perpendicular to the radius AC

Unit 3 AS 1.2 Applying Algebraic Skills To Circles

Example

1) Show that A(7,5) lies on the circle $x^2 + y^2 - 6x - 4y - 12 = 0$ and find the equation of the tangent at A.

A(7,5) Substitute in
$$X^2+y^2-6x-4y-12$$

= $7^2+5^2-42-20-12$
= 0 so (7,5) lies on circle

Equation of tangent
$$x^2+y^2-6x-4y-12=0$$

$$2y=-6 \qquad 2f=-4 \qquad \text{centre } (3,2)$$

$$g=-3 \qquad f=-2 \qquad \text{centre } (3,2)$$

M radius =
$$\frac{5-2}{7-3}$$

= $\frac{3}{4}$
Equation $y-b=M(x-a)$
 $y-5=-\frac{1}{3}(x-7)$
M rangent = $-\frac{11}{3}$
 $3y-15=-4x+28$
 $3y+4x=43$

2) Find the equations of the tangents from the point (0,-4) to the circle $x^2 + y^2 = 8$

Equation
$$y = mx + c$$
.

 $y = mx - 4$

Solve Simultaineably $x^2 + (mx - 4)^2 = 8$
 $x^2 + (mx - 4)^2 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - 8mx + 16 = 8$
 $x^2 + m^2x^2 - m^2x + 16 = 8$
 $x^2 + m^2x^2 - m^2x + 16 = 8$
 $x^2 + m^2x +$

Intersecting Circles

There are five possibilities:

Consider two circles with radii r_1 and r_2 with $r_1 > r_2$.

Let *d* be the distance between the centres of the two circles.

The circles do not touch.

 $d = r_1 + r_2$

The circles touch externally.

Note Don't try to memorise this, just try to understand why each

one is true.

 $r_1 - r_2 < d < r_1 + r_2$

The circles meet at two distinct points.

 $d = r_1 - r_2$

The circles touch internally.

 $d < r_1 - r_2$

The circles do not touch.

Example

Determine how, if at all, the circles with equations $x^2 + y^2 - 8x + 6y - 11 = 0$ and $x^2 + y^2 + 4x - 10y + 4 = 0$ intersect

$$2y = -8 \qquad 2f = 6 \qquad C = -11$$

$$2y = -8 \qquad 2f = 6 \qquad C = -11$$

$$Q = -4 \qquad f = 3$$

$$Cintre (4, -3) \qquad Padius \qquad \sqrt{16+9-(-11)}$$

$$= \sqrt{36}$$

$$= 6.$$

Unit 3 AS 1.2 Applying Algebraic Skills To Circles

$$x^{2}+y^{2}+4x-10y+4=0$$
 $2g=4$
 $g=2$
 $f=-5$
Centre (-2,5)
radius $\sqrt{4+25-4}$
=5
Clistance between centres

Clistona Derven Centres

$$cl = \sqrt{(4-(-2))^2 + (-3-5)^2}$$
 $d = \sqrt{36+64}$
 $d = 10$

Circles intersect in two dishact points since. distrance between centres < sim of radii

Ex 14D, pg 316 – 317