AS 1.4 Applying Calculus Skills of Integration

Integration

The reverse process to differentiation is integration. The integral is written

[ fGx)dx

and is read as the indefinite integral of f(x) with respect to x.
Rules:- I Y I SR Ve %
» » “Increase the power by 1, then divide by the new power”
» Make sure you remember + ¢

1 n+l . d 1 n+l
X

= x"dx = +c ie. —(— x +c)=x"
J. n+1l ( dx( n+l ) )
a J‘axndxzixn-&l +C
n+l

U@+ gGdx = [ f(x)dx + [g(x)dx

J. kf(x)dx=k J. f(x)dx (k a constant)

c is called the constant of integration , a number which disappears on differentiation
and therefore must reappear on integration.
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AS 1.4 Applying Calculus Skills of Integration

As with differentiation the function must be in the correct form for integrating.
Deal with brackets and fractions BEFORE attempting to integrate.
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AS 1.4 Applying Calculus Skills of Integration

“Special” Integrals

Integrals of the form _[ (ax + b)" dx are found as follows :-

I (ax + b)" dx

(ax+b)"“.£+c (n=-1)

n+1
R n+l .
_(ax+b)” Note :-
a(n + l)
This generalisation only applies
when the contents of the bracket in
the integral is linear. —i.e. in the
Examples :- form ax + b with no x2,x° ,J}jl .
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AS 1.4 Applying Calculus Skills of Integration

More “Special” Integrals

The above generalisation may be adapted to help integrate more complex
trigonometric functions.

SoAdx =OSX IC Joosa d = sipx e
A’B} I sin(ax + b )ix _[ cos(ax + b)x
=—lcos(ax+b)+c =lsin(ax+b)+c

Note :-

Examples :-

Again the contents of the
bracket MUST be linear.

1. I3cos4xdx 2. J.sin(Zx—zldx
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u
3. | —6sin%x dx 4. (sin4x+cos(2x+%))dx
- 2. 2K - =Larln + LS OxFT L
' _é_.écosL«m sl 38 (AT
- a3
QCUSL/HC
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AS 1.4 Applying Calculus Skills of Integration

Differential Equations

Equations like Z—y =x?-7 and ? = t? + 3t + 5 are called differential equations
X t
(they have a derivative in them)

We solve them by integration to find the general solution (including constant) and
then use additional information to find c and hence particular solution.

Examples

1) Write s in terms oftif§:3t2 and whens=0,t=2
t

2) For every point on a curve Z—y = 3x*-10x . If the curve passes through the
X

point (-1,0), find the equation of the curve.
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(9 = N3-BAHC.
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J C=6
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AS 1.4 Applying Calculus Skills of Integration

3) Fora curve, it is known that £(x) = 6 cos 3x. The point (%, 3) lies on the

curve. Find f(x).
i) = 6eos 3n
PO Joamsax o
) = +:65IN3XEC.
Goes gl pont (T, 3)
'?? 'Elij
3= txbsSin3T e
3 = ZLx(l)+c
c-5
PX): 28N 3X +5
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AS 1.4 Applying Calculus Skills of Integration

Definite Integrals

These are integrals where we have values for x between which we are calculating a
value for the integral.

b
I f(x)dx =F(b)—F(a) as<x<b and F(x) is the anti-derivative of f(x).

" e Wi _ .
NB % fower imil

= Indefinite integrals give a function
= Definite integrals give a value
= Upper limit - lower limit

%
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mh
L ph

e S /uftfc‘,
limis~on eny

Wer (N
?)rackah

\‘\

=4

l3

LR
~§

J
3
l—
5

[

2

2) Evaluate It(t2+t3)dt
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AS 1.4 Applying Calculus Skills of Integration

i
3) Evaluate j(3t —1)*dt
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4) Find the positive value of z for which J- (1+2x)dx =4
|
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AS 1.4 Applying Calculus Skills of Integration

Definite integrals for trigonometric functions

e remember — you need to use radians!

2
1) Evaluate I3 sin xdx
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2) Evaluate j3 cos 2xdx
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AS 1.4 Applying Calculus Skills of Integration

3) Evaluate I%cos@x—l)dx (2s.f)
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4) Evaluate, giving your answer as a surd in its simplest form:
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