Integration

The reverse process to differentiation is integration. The integral is written

$$\int f(x)dx$$

and is read as the <u>indefinite integral</u> of f(x) with respect to x.

Rules:-

"Increase the power by 1, then divide by the new power"

Make sure you remember + c

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c$$

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c \qquad (i.e. \frac{d}{dx} (\frac{1}{n+1} x^{n+1} + c) = x^{n})$$

•
$$\int kf(x)dx = k \int f(x)dx$$
 (k a constant)

c is called the constant of integration, a number which disappears on differentiation and therefore must reappear on integration.

Examples

1)
$$\int x^7 dx$$

$$= \frac{\chi^2}{8} + C$$

2)
$$\int t^{-4} dt$$

= $\frac{t^{-3}}{-3} + C$
= $-\frac{1}{3} + C$

3)
$$\int 6x^3 dx$$

$$= 6\frac{X^4}{4} + C$$

$$= \frac{3}{2}X^4 + C$$

4)
$$\int (5+4t^{-2})dt$$

= 5t + $\frac{4t}{-1}$ + c
= 5t - $\frac{1}{t}$ + c

5)
$$\int -\frac{1}{6}x^{1/2}dx$$

= $-\frac{2}{3}x + \int_{0}^{2} \sqrt{\frac{3}{2}} + C$
= $-\frac{1}{9}x + \int_{0}^{3} \sqrt{\frac{3}{2}} + C$.

p. 267 Ex 11A

As with differentiation the function must be in the correct form for integrating. Deal with brackets and fractions BEFORE attempting to integrate.

6)
$$\int (x^2 - 3)^2 dx$$

= $\int (x^4 - 6x^2 + 9) dx$
= $\frac{x^5}{5} - 2x^3 + 9x + 0$

7)
$$\int \frac{4}{3x^4} dx$$

$$= \int \frac{4}{3} x^{-4} dx$$

$$= \frac{4}{3} \cdot \frac{x^{-3}}{3} + C$$

$$= -\frac{4}{3} \cdot \frac{x^{-3}}{3} + C$$

8)
$$\int \frac{t+t^2+\sqrt{t}}{t} dt$$

$$= \int \left(\frac{t}{t} + \frac{t^2}{t} + \frac{t^2}{t}\right) dt$$

$$= \int \left(1+t+t^2\right) dt$$

$$= t+\frac{t^2}{2} + \frac{t^2}{2} + c$$

$$= t+\frac{t^2}{2} + 2t^2 + c$$

p. 269 Ex 11B

"Special" Integrals

Integrals of the form $\int (ax+b)^n dx$ are found as follows:

$$\int (ax+b)^n dx$$

$$= \frac{1}{n+1}(ax+b)^{n+1} \cdot \frac{1}{a} + c \qquad (n = -1)$$

$$=\frac{(ax+b)^{n+1}}{a(n+1)}+c$$

Examples:-

Note:-

This generalisation only applies when the contents of the bracket in the integral is linear. -i.e. in the

form ax + b with **no** $x^2, x^3, \sqrt{x}, \frac{1}{x}$,

1.
$$\int (8-2x)^{4} dx$$

$$= \frac{\left(8-2x\right)^{5}}{5x(-2)} + c$$

$$= -\frac{1}{10} \left(8-2x\right)^{5} + c$$

2.
$$\int (2x+1)^{\frac{3}{2}} dx$$
= $\left(\frac{2x+1}{2}\right)^{\frac{1}{2}} + C$
= $-\left(2x+1\right)^{\frac{5}{2}} + C$

3.
$$\int \frac{dx}{\sqrt{(3x+4)}} = \int (3x+4)^{-\frac{1}{2}} dx$$

$$= \frac{3x+4}{\frac{1}{2} \times 3} + c$$

$$= \frac{2}{3} (3x+4)^{\frac{1}{2}} + c$$

4.
$$\int 3\sqrt[5]{(4x-1)^{3}} dt$$

$$= \int 3(4x-1)^{\frac{3}{5}} dx$$

$$= 3(4x-1)^{\frac{8}{5}} + c$$

$$= \frac{15}{32}(4x-1)^{\frac{8}{5}} + c$$

p. 273 Ex 11C

More "Special" Integrals

The above generalisation may be adapted to help integrate more complex

trigonometric functions.

SOOSX OX = SINX +C

badavardi

$$\int \sin(ax+b)dx$$

$$\int \cos(ax+b)dx$$

$$= -\frac{1}{c}\cos(ax+b) + c$$

$$= \frac{1}{a}\sin(ax+b) + c$$

Examples:-

Again the contents of the bracket MUST be linear.

1.
$$\int 3\cos 4x dx$$

$$2. \int \sin\left(2x - \frac{\pi}{6}\right) dx$$

$$2. \int \sin\left(2x - \frac{\pi}{6}\right) dx$$

$$= -\frac{1}{2}\cos\left(2x - \frac{\pi}{6}\right) + C$$

3.
$$\int -6\sin\frac{3}{2}x \, dx$$

$$= \frac{2}{3} \cdot 6\cos\frac{3}{2}x + C$$

$$= 4\cos\frac{3}{2}x + C$$

4.
$$\int (\sin 4x + \cos(2x + \frac{\pi}{4})) dx$$

= $-\frac{1}{4} \cos(2x + \frac{\pi}{4})) dx$

p. 277 Ex 11E

Differential Equations

Equations like $\frac{dy}{dx} = x^2 - 7$ and $\frac{ds}{dt} = t^2 + 3t + 5$ are called **differential equations** (they have a derivative in them)

We solve them by integration to find the general solution (including constant) and then use additional information to find c and hence particular solution.

Examples

1) Write s in terms of t if
$$\frac{ds}{dt} = 3t^2$$
 and when $s = 0$, $t = 2$

$$\frac{ds}{dt} = 3t^2$$

$$s = \int 3t^2 dt$$

$$= \frac{3t^3}{3}t^2$$
When $s = 0$, $t = 2$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

$$0 = 2^3 + 0$$

2) For every point on a curve $\frac{dy}{dx} = 3x^2 - 10x$. If the curve passes through the point (-1,0), find the equation of the curve.

$$\frac{dy}{dx} = 3x^{2} - 10x$$

$$y = \int (3x^{2} - 10x) dx$$

$$y = x^{3} - 5x^{2} + c$$
Point $(-1,0)$ so $0 = (-1)^{3} - 5(-1)^{2} + c$

$$0 = -1 - 5 + c$$

$$c = 6$$

$$y = x^{3} - 5x^{2} + 6$$

3) For a curve, it is known that $f'(x) = 6 \cos 3x$. The point $(\frac{\pi}{2}, 3)$ lies on the curve. Find f(x).

$$f'(N) = 6\cos 3x$$

$$f(N) = \int_{3}^{2} 6\cos 3x \, dx$$

$$f(N) = \int_{3}^{2} 6\sin 3x + C.$$
Goes through point $(\frac{\pi}{2}, 3)$

$$\frac{1}{3} f(N)$$

$$3 = \int_{3}^{2} x 6\sin 3\pi + C.$$

$$3 = 2x(-1) + C.$$

$$C = 5$$

$$f(M) = 2\sin 3x + 5$$

p. 280 Ex 11G

Definite Integrals

These are integrals where we have values for x between which we are calculating a value for the integral.

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \qquad a \le x \le b \qquad \text{and } F(x) \text{ is the anti-derivative of } f(x).$$

$$\text{NB} \qquad \text{Value With} \qquad \text{lower limit}$$

- Indefinite integrals give a function
- Definite integrals give a value
- Upper limit lower limit

Examples

1) Evaluate
$$\int_{3}^{3} x^{2} dx$$

Cohnite integral $\int_{3}^{3} x^{2} dx$

$$= \left[\frac{\chi_{3}}{3} \right]_{3}^{3} = \left[\frac{\chi_{3}}{3} \right]_{3}^{3}$$

$$= \frac{3^{3} - 1^{3}}{3}$$

2) Evaluate
$$\int_{-1}^{2} t(t^{2} + t^{3}) dt$$

$$= \int_{-1}^{2} (t^{3} + t^{4}) dt$$

$$= \left(\frac{t^{4}}{t^{4}} + \frac{t^{5}}{5} \right)^{2}$$

$$= \left(\frac{2^{4}}{t^{4}} + \frac{2^{5}}{5} \right) - \left(\frac{(1)^{4}}{t^{4}} + \frac{(-1)^{5}}{5} \right)$$

$$= 10 \frac{7}{20}$$

3) Evaluate
$$\int_{-1}^{1} (3t-1)^4 dt$$

= $\left[\frac{(3t-1)^5}{5 \times 3} \right]_{-1}^{1}$

= $\left[\frac{1}{15} (3t-1)^5 \right]_{-1}^{1}$

= $\left[\frac{1}{15} \times 2^5 - \frac{1}{15} (-4)^5 \right]$

= $\frac{32}{15} + \frac{1024}{15}$

= $\frac{1056}{15}$

P286 EX 12A (1) -> 6

4) Find the positive value of z for which
$$\int_{1}^{z} (1+2x)dx = 4$$

$$\int_{1}^{2} (1+2x) dx = 4$$

$$\left[x + 2x^{2} \right]_{1}^{2} = 4$$

$$\left[x + x^{2} \right]_{1}^{2} = 4$$

$$\left[x +$$

p.286 Ex 12A

Definite integrals for trigonometric functions

- remember you need to use radians!
- 1) Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 3\sin x dx$ $= \left[-3\cos x\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ $= \left(-3\cos x\right) \left(-3\cos \frac{\pi}{4}\right)$ $= 0 + 3\left(\frac{1}{\sqrt{2}}\right)$ $= \frac{3}{\sqrt{2}}$ $= \frac{3\sqrt{2}}{2}$

2) Evaluate
$$\int_{0}^{\frac{\pi}{6}} 3\cos 2x dx$$

$$= \left(\frac{1}{2} \times 3\sin 2x\right)^{\frac{\pi}{6}}$$

$$= \left(\frac{3}{2}\sin \frac{\pi}{3}\right) - \left(\frac{3}{2}\sin 0\right)$$

$$= \frac{3}{2} \times \frac{33}{2}$$

$$= \frac{3\sqrt{3}}{4}$$

3) Evaluate
$$\int_{2}^{4} \frac{1}{2} \cos(3x-1) dx$$
 (2 s.f.)

$$= \left[\frac{1}{3} \times \frac{1}{2} \sin(3x-1) \right]_{2}^{4}$$

$$= \left[\frac{1}{6} \sin(3x-1) \right]_{2}^{4}$$

$$= \frac{1}{6} \sin(11 - \frac{1}{6} \sin 5)$$

$$= -0.0068 \quad (2sf)$$

4) Evaluate, giving your answer as a surd in its simplest form:

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 2\sin x - 3\cos x dx$$

$$= \left[-2\cos \frac{\pi}{3} - 3\sin \frac{\pi}{3} \right] - \left(-2\cos \frac{\pi}{6} - 3\sin \frac{\pi}{6} \right)$$

$$= \left(-2x \frac{1}{2} - 3x \frac{\sqrt{3}}{2} \right) - \left(-2x \frac{\sqrt{3}}{2} - 3x \frac{1}{2} \right)$$

$$= -1 - 3\sqrt{3} + \sqrt{3} + \frac{3}{2}$$

$$= \frac{1}{2} - \sqrt{3}$$

p. 289 Ex 12B