Differentiation

Reminder **Laws of Indices**

•
$$(ab)^m = (\lambda^m)^m$$

$$\bullet \quad a^{-m} = \qquad \qquad \lim_{n \to \infty} a^{-m} = \qquad \qquad \lim_{n \to \infty} a^{-m} = \qquad \lim_{n \to \infty} a^{-m} = a^$$

•
$$a^{m/n} = \int \int QM$$

$$a^0 =$$

$$a^1 = \mathcal{A}$$

We need to be able to use these rules to rewrite expressions so that they contain no of signs no is on the bottom of Reichas and no brackets.

$$\Theta \cup \sqrt{X} = X^{\frac{1}{2}}$$

$$65x^2 = 5x^2$$

$$9 = \frac{2}{3\sqrt{x}} = \frac{2}{3}x^{-\frac{1}{2}}$$

$$(9) \quad \frac{\lambda^3 + (\lambda^2)}{\lambda^2} = \frac{\lambda^3}{\lambda^2} + \frac{\lambda^2}{\lambda^2} - \frac{\lambda^2}{\lambda^2}$$

• $a^{m/n} = \Lambda \sqrt{qM}$ • $a^0 = 1$ • $a^0 = 1$ • $a^1 = Q$ For a function f(x), the derived function or derivative of f(x) is denoted by f'(x) or $\begin{array}{c}
3 \sqrt{3} + 5x \\
3 \sqrt{3} + 5x \\
3 \sqrt{3} + 5x \\
4 \sqrt{3} + 5x \\
7 \sqrt{2} +$ $\frac{dy}{dx}$ and given as

$$f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

Rules for Differentiation

"Multiply by the power and reduce the power by 1"

* If
$$f(x) = x^n$$

then

1

If $f(x) = ax^n$

then

$$\mathbf{f'}(\mathbf{x}) = \mathbf{nax}^{n-1}$$

* If
$$f(x) = g(x) + h(x)$$
 then $f'(x) = g'(x) + h'(x)$

$$f'(x) = g'(x) + h'(x)$$

Note

- f(x) or y needs to be in the form of a sum of powers of x before we can differentiate it.
- return the derivatives to a sensible form
- derivative of a constant = 0

Examples

1)
$$f(x) = x^{3}$$
 2) $y = x^{-\frac{1}{2}}$ 3) $g(x) = -\frac{3}{4}x^{6}$

$$f'(x) = 3x^{2}$$

$$= -\frac{1}{2}x^{\frac{3}{2}}$$

$$= -\frac{1}{2}x^{\frac{3}{2}}$$

$$= -\frac{1}{2}x^{\frac{3}{2}}$$

$$= -\frac{1}{2}x^{\frac{3}{2}}$$
answer shall point part of x

4) $k(x) = 3x$

$$k'(x) = 3$$

$$= -\frac{1}{2}x^{\frac{3}{2}}$$

$$= -\frac{$$

7)
$$y = -x^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = +\frac{1}{2}x^{-\frac{3}{2}}$$

$$= \frac{1}{2x^{\frac{3}{2}}}$$

8) differentiate
$$-5x^{-\frac{4}{3}}$$

$$y = -5x^{-\frac{4}{3}}$$

$$\frac{dy}{dx} = \frac{20}{3}x^{-\frac{7}{3}}$$

$$= \frac{20}{3}x^{\frac{7}{3}}$$

p. 210 Ex 9A

Examples (cont)

9)
$$f(x) = x^4 - 3x^{-2} + 9x - 6$$

$$f'(x) = \left(\frac{1}{4} x^3 + \frac{0}{4} x^{-3} + 0 \right)$$

$$= \left(\frac{1}{4} x^3 + \frac{0}{4} x^3 + 0 \right)$$

10)
$$g(x) = 3x^{2} - \frac{x}{5} - \frac{3}{2}x^{-5}$$

$$g^{1}(x) = 6x - \frac{1}{5} + \frac{15}{2}x^{-6}$$

$$= 6x - \frac{1}{5} + \frac{15}{2x^{6}}$$

continue p. 210 Ex 9A

Remember:-

Deal with brackets and fractions **before** attempting to differentiate.

Examples (cont)

11)
$$f(x) = (x^2 + 2)(x - 4)$$

 $f(x) = (x^2 + 2)(x - 4)$
 $f'(x) = 3x^2 - 5x + 2$

12)
$$y = \frac{1}{x^2}$$

$$y = x^{-2}$$

$$y = x^{-2}$$

$$y = -2x^{-3}$$

$$y = -2x^{-3}$$

$$y = -2x^{-3}$$

$$y = -2x^{-3}$$

13)
$$h(x) = \sqrt{x}$$

$$= \sqrt{\frac{1}{2}}$$

$$h'(N) = \frac{1}{2}\sqrt{-\frac{1}{2}}$$

$$= \frac{1}{2\sqrt{2}}$$

14)
$$h(x) = \sqrt{x} (x^3 + \sqrt{x})$$

$$= \sqrt{\frac{1}{2}} (\sqrt{3} + \sqrt{\frac{1}{2}})$$

15)
$$g(x) = x^{2} - 2x + 1$$

$$= \frac{\Lambda^{2}}{\chi^{\frac{1}{2}}} - \frac{2\chi}{\chi^{\frac{1}{2}}} + \frac{1}{\chi^{\frac{1}{2}}}$$

$$= \chi^{\frac{3}{2}} - 2\chi^{\frac{1}{2}} + \chi^{-\frac{1}{2}}$$

$$= \chi^{\frac{3}{2}} - 2\chi^{\frac{1}{2}} + \chi^{-\frac{1}{2}}$$

$$= \chi^{\frac{3}{2}} - \chi^{\frac{1}{2}} - \chi^{-\frac{1}{2}} - \chi^{\frac{3}{2}}$$

$$= \chi^{\frac{1}{2}} - \chi^{\frac{1}{2}} - \chi^{\frac{3}{2}}$$

$$= \chi^{\frac{1}{2}} - \chi^{\frac{1}{2}} - \chi^{\frac{3}{2}}$$

$$= \chi^{\frac{1}{2}} - \chi^{\frac{1}{2}} - \chi^{\frac{3}{2}}$$

16)
$$h(x) = \sqrt[3]{x^2} - \frac{2}{3\sqrt{x}}$$

$$h(x) = \sqrt{x^2} - \frac{2}{3\sqrt{x^2}}$$

$$= \sqrt{x^2} - \frac{2}{3\sqrt{x^2}}$$

$$= \sqrt{x^2} - \frac{2}{3\sqrt{x^2}}$$

$$h'(x) = \frac{2}{3}x^{-\frac{1}{3}} + \frac{1}{3}x^{-\frac{3}{2}}$$

$$= \frac{2}{3\sqrt{x^2}} + \frac{1}{3\sqrt{x^2}}$$

APPLICATIONS OF DIFFERENTIATION

Consider the graph of a function f(x)

Suppose we wish to know the gradient of the tangent to the curve at point A (x, f(x)). We look at a point close by, namely B (x+h, f(x+h)). As we move the point B closer to the point A the gradient of the line AB becomes the gradient of the tangent at point A.

$$m_{AB} = \underbrace{f(x+h)-f(x)}_{x+h-x}$$
$$= \underbrace{f(x+h)-f(x)}_{h}$$

So the gradient of the tangent at A is

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

$$= f'(x)$$

Conclusion

The derivative of a function represents

- The **rate of change** of the function at x
- The gradient of the tangent to the graph of the function at x

Examples

1) Find the gradient of the curve $y = 6x - 2x^3$ at the point when x = 3

gradient is -48 when x =3.

2) A curve has equation $y = 3x(x^3 - 2)$. Find $\frac{dy}{dx}$ when x = -1

$$y = 3x^4 - 6x$$
 $\frac{dy}{dx} = 12x^3 - 6$
When $x = -1$ $\frac{dy}{dx} = 12(-1)^3 - 6$
 $\frac{dy}{dx} = -18$

3) Find the gradient of the tangent to the curve $y = 3x^2 - \frac{1}{x}$ at x = -1

Chifferenhalo
$$y = 3x^2 - x^{-1}$$

$$\frac{dy}{dx} = 6x + x^{-2}$$

$$= 6x + \frac{1}{x^2}$$
When $x = -1$ $\frac{dy}{dx} = -6+1$

$$= -5$$

4. The pulse rate in beats per minute of a runner t minutes after starting to run is given by

$$p(t) = 60 + \frac{1}{2}t^2 - t$$
 for t < 10

Find the rate of change of the pulse of the runner 6 minutes after starting.

5. A ball is thrown vertically upwards. The height (in metres) of the ball above the ground, *t* seconds after it is thrown, can be represented by the formula

$$h(t) = 30t - 6t^2.$$

The velocity, $v \text{ ms}^{-1}$, of the ball at time t is given by $v = \frac{dh}{dt}$.

Find the velocity of the cricket ball one second after it is thrown.

$$V = \frac{dh}{dt} = 30 - 12t^{2}$$

When $t=1$ $\frac{dh}{dt} = 30 - 12 \times 1^{2}$
 $V = 18 \text{ m/s}$.

The Derivatives of sinx and cosx

$$y = \cos x$$

$$\Rightarrow \frac{dy}{dx} = -\sin x$$
or
$$f(x) = \cos x$$
or
$$\frac{d(\cos x)}{dx}$$

$$\Rightarrow f'(x) = -\sin x$$

$$= -\sin x$$

Note: - Any calculus involving trigonometric functions MUST be done in radians.

Examples:- Determine the derivatives of:-

2)
$$-4 \cos x$$
 3) c

$$y = -4 \cos x$$

$$dy = 4 \sin x$$

$$dx$$

3)
$$\cos x - \sin x$$

$$y = COSX - SINX$$

$$CIY = -SINX - COSX$$

4)
$$y = \frac{1}{2}x^2 - \cos x$$

$$\frac{dy}{dx} = x + \sin x$$

5) h (
$$\%$$
) = $\frac{5}{\sqrt{x}} - 4\sin x + \frac{1}{\sqrt[3]{x}}$
h(x) = $\frac{5}{\sqrt{x^{2}}} - 4\sin x + \frac{1}{\sqrt{x^{3}}}$
h(x) = $5x^{-\frac{1}{2}} - 4\sin x + x^{-\frac{1}{3}}$
h(x) = $-\frac{5}{2}x^{-\frac{3}{2}} - 4\cos x - \frac{1}{3}x^{-\frac{1}{3}}$
= $-\frac{5}{2x^{\frac{3}{2}}} - 4\cos x - \frac{1}{3}x^{\frac{1}{3}}$

p. 227 Ex 9E Q()

Further application

6) Find the gradient of the tangent to the curve $f(x) = -4 \cos x$ when $x = \frac{4\pi}{3}$ $f(x) = -4 \cos x$ $f'(x) = 4 \sin x$ When $x = 4 \sin x$ $f'(4\pi) = 4 \sin x$

when
$$x = \frac{4\pi}{3}$$
 $f'(4\pi) = 4\sin 4\pi$
=-4 $\sin (\pi)$
=-4. $\frac{3}{2}$
=-2.3

7) For
$$f(x) = 2\sin x$$
, find $f'(\frac{\pi}{3})$

$$f'(x) = 2\cos x$$

$$f'(\frac{\pi}{3}) = 2\cos \frac{\pi}{3}$$

$$= 2 \cdot \frac{1}{2}$$

8)
$$f(x) = \frac{2x - 3\sqrt{x} \sin x}{\sqrt{x}} \text{ find } f'(x)$$

$$f(x) = \frac{2x - 3x}{\sqrt{x}} \frac{1}{2} \frac{\sin x}{\sqrt{x}}$$

$$= \frac{2x}{\sqrt{x}} - \frac{3x}{\sqrt{x}} \frac{1}{2} \frac{\sin x}{\sqrt{x}}$$

$$= \frac{2x}{\sqrt{x}} - \frac{3x}{\sqrt{x}} \frac{1}{2} \frac{\sin x}{\sqrt{x}}$$

$$= \frac{2x}{\sqrt{x}} - \frac{3\cos x}{\sqrt{x}}$$

$$= \frac{1}{\sqrt{x}} - 3\cos x$$

The "Chain" Rule for Differentiation of composite functions

The chain rule is used to find **derivatives** of functions within other functions.

You may do this by making a substitution, or remembering to differentiate the bracket, then multiply the result by the derivative of the contents of the bracket.

i.e for

Examples:- Differentiate the following functions

1.
$$y = (3x^{2} + 6)^{3}$$
2. $g(x) = 6(2x - 7)^{-2}$
3. $y = \sqrt{(2x^{5} + 3x)}$
 $\frac{dy}{dx} = 3(3x^{2} + 6)^{2}x 6x$
 $\frac{dy}{dx} = \frac{3(3x^{2} + 6)^{2}x}{2x^{5} + 3x}$
 $\frac{dy}{dx} = \frac{2(2x^{5} + 3x)^{-\frac{1}{2}}}{2x^{5} + 3x}$
 $\frac{dy}{dx} = \frac{1}{2}(2x^{5} + 3x)^{-\frac{1}{2}}$
 $\frac{dy}{dx} = \frac{1}{2}(2x^{5} + 3x)^{-\frac{1}{2}}$

4)
$$\frac{1}{(2x-1)^4}$$

5) $y = \frac{2}{\sqrt{3x^2-4}}$
 $y = (2x-1)^{-14}$
 $y = (2x-1)^{-14}$

Application

6) Find the gradient of the tangent to the curve $y = (4x + 3)^6$ when x = -1

Clifterennale
$$\frac{dy}{dx} = 6 (ux+3)^5 \times 4$$

= 24 (ux+3)⁵
When $x=-1$ $\frac{dy}{dx} = 24 (ux(-1)+3)^5$
= 24 (-1)⁵
= -24

p. 234 Ex 9G Q. 7 onwards

The chain rule and trigonometry **Examples: differentiate**

1)
$$y = \sin^2 x$$

$$2) \quad y = 4\cos 6x$$

2)
$$y = 4\cos 6x$$
 3) $y = 2\cos^3 x$

①
$$y = \sin^2 x$$

= $(\sin x)^2 \in \text{ with brackels}$
 $(y) = 2(\sin x)^2 \times \cos x$
= $2\sin x \cos x$

2)
$$y = 4 \cos(6x)$$
 \Rightarrow put in brackets)
 $\frac{dy}{dx} = -4 \sin(6x) \times 6$
 $= -24 \sin 6x$

(3)
$$y = 2\cos^3x$$

 $= 2(\cos x)^3$
 $\frac{dy}{dx} = 6(\cos x)^2 \times (-\sin x)$
 $= -6\sin x \cos^2 x$

4)
$$f(x) = \sin(3 - x)$$

5) Find the gradient of the curve $y = 3\cos 3x$ at the point where $x = \frac{\pi}{3}$

(i)
$$f(x) = \sin(3-x)$$

 $f'(x) = \cos(3-x) \times (-1)$
 $= -\cos(3-x)$

(5)
$$y = 3\cos(3x)$$

 $\frac{dy}{dx} = -3\sin(3x) \times 3$
 $= -9\sin 3x$

When
$$x = \frac{\pi}{3}$$
 $\frac{dy}{dx} = -9\sin 3\left(\frac{\pi}{3}\right)$
= $-9\sin \pi$
= 0.

p. 235 Ex 9H

Using Differentiation

Determining the equation of a tangent to a curve by differentiation

(you have already done questions involving finding the gradient of tangents)

Reminder: straight lines can be modelled using gradient m and any point (a,b) by y - b = m(x - a)

1) Find the equation of the tangent to the curve $y = x^2 - 4x + 7$ at the point (3,4)

gradient
$$\frac{dy}{dx} = 2x - 4$$

Notice $x = 3$

Notice $\frac{dy}{dx} = 6 - 4$
 $= 2$.

Equation

 $y - b = m(x - a)$
 $y - 4 = 2(x - 3)$
 $y - 4 = 2x - 6$
 $y = 2x - 2$

2) The gradient of a tangent to the curve $y = x^3 - 2x^2 + 7$ is 4 at point P. Find the with XZD equation of the tangent at P.

Gradient is
$$\lambda_1 = 3x^2 - 4x$$

Gradient is $\lambda_1 = 30$
 $3x^2 - 4x - 4 = 0$
 $(3x + 2)(x - 2) = 0$
 $x = -\frac{2}{3}$
 $x = -\frac{2}$

27y = 108x +85.

3) Find the equation of the tangent to the curve $y = 6 \sin x$ at the point where $x = \frac{\pi}{6}$

the equation of the tangent to the curve
$$y = 6 \sin x$$
 at the gradient $\frac{dy}{dx} = 6 \cos x$

when $x = \frac{dy}{dx} = 6 \cos x$
 $= 6 \sqrt{3}$
 $= 3 \sqrt{3}$

Figurian $y = 6 \sin x$
 $= 6 \times \frac{1}{2}$
 $= 3$.

Equation $y - b = m(x - a)$
 $y - 3 = 3 \sqrt{3}x - \sqrt{3}x$
 $y - 3 = 3 \sqrt{3}x - \sqrt{3}x$
 $y - 3 = 3 \sqrt{3}x - \sqrt{3}x$

p. 240 Ex 10A

Increasing and Decreasing Functions and Stationary Points

For any curve y = f(x), at point x

If
$$\frac{dy}{dx} > 0$$
 (tangent has +ve gradient) the function f(x) is MCYCOSING

If
$$\frac{dy}{dx} < 0$$
 (tangent has -ve gradient) the function f(x) is

If
$$\frac{dy}{dx} = 0$$
 (tangent is horizontal) the function f(x) has a STUMMY POINT

Example

- 1) For the function $f(x) = 3x x^3$, find where it is
- a) stationary
- b) increasing
- c) decreasing

(a) stahuary FW)=0 33x=0 x=±1

(a) Increasing
$$f'(x) > 0$$

 $3-x^2 > 0$ Quadratic inequation $-1 < x < 1$ — Superfixed $-1 < x < 1$

- (c) decreasing fixed x<-1 or x>1
- 2) Show that the function $f(x) = x^3 3x^2 + 3x 10$ is never decreasing.

$$f'(N) = 3x^2 - 6x + 3$$

$$= 3(x^2 - 2x + 1)$$

$$= 3(x - 1)^2$$

$$= 3(x - 1)^2$$

20 so fix) is nearer decreasing

3) For $g(x) = x^3 - 3x^2 - 9x + 4$, find the range of values for which g(x) is decreasing.

$$g'(x) = 3x^{2} - 6x - 9$$

$$= 3(x^{2} - 2x - 3)$$

$$= 3(x - 3)(x + 1)$$

$$g'(x) < 0$$

=> $3(x-3)(x+1) < 0$
-1< x < 3

Stationary Points and Their Nature

Stationary Points occur when $\frac{dy}{dx} = 0$ (or f'(x) = 0)

The nature of stationary points depends on what is happening either side of them.

Nature of Stationary Points

Maximum Turning Point

$$\frac{dy}{dx} > 0$$
 before

$$\frac{dy}{dx} < 0$$
 after

Minimum Turning Point

$$\frac{dy}{dx}$$
 < 0 before

$$\frac{dy}{dx} > 0$$
 after

Rising Point of Inflection

$$\frac{dy}{dx} > 0$$
 before

$$\frac{dy}{dx} > 0$$
 after

Falling Point of Inflection

$$\frac{dy}{dx}$$
 < 0 before

$$\frac{dy}{dx} < 0$$
 after

Examples

1) Find the co-ordinates of the stationary points on the curve $y = 2x^3 - 9x^2 + 12x$ and determine their nature.

$$\frac{dy}{dx} = 6x^{2} - 18x + 12x$$

$$= 6(x^{2} - 3x + 2)$$

$$= 6(x - 2)(x - 1)$$
* factorise if possible

Staturary points
$$\frac{dy}{dx} = 0$$

 $6(x-2)(x-1) = 0$
 $x=2$ or $x=1$
 $y = 2$ or $x=1$
 $x=1$ $y=2-9+12$
 $y=3$ y

2) Find the stationary points on the curve $y = \frac{1}{4}x^4 - \frac{4}{3}x^3 + 2x^2 + 3$ and determine their nature.

$$y = \frac{1}{4}x^{4} - \frac{1}{5}x^{3} + 2x^{2} + 3.$$

$$\frac{dy}{dx} = x^{3} - 4x^{2} + 4x$$

$$= x(x^{2} - 4x + 4)$$

$$= x(x - 2)^{2}$$

For steilmany points
$$\frac{dy}{dx} = 0$$

 $\frac{x(x-2)^2}{x=0} = 0$

$$y = 3$$
When $x = 0$ $y = 3$

$$x = 2$$

$$y = \frac{1}{4} \times 2^4 - \frac{1}{3} \times 2 + 2 \times 2^2 + 3$$

$$= \frac{13}{3}$$
(0,3)
$$(2, \frac{13}{3})$$

Nature	(i)	0	(I) ->	2	(3)
dy = x(x-2)2	-9	0	Ì	ð	3
shape	\	_	/	<	
(0,3) is a minimum turning point $(2,\frac{13}{3})$ is a point of inflection.					

p. 256 Ex 10C

Curve Sketching

To sketch the graph of a function we need to know

- where it crosses the axes
- stationary points and nature
- what happens as $x \to +\infty$ and as $x \to -\infty$

Example

Sketch the curve $y = 8x^3 - 3x^4$

* Graph of denued function —> see unif (1) notes

<u>δ</u> γχ

p. 262 Ex 10D