AS 1.1 Applying Algebraic Skills to Logarithms and Exponentials
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Exponential Functions and their Graphs

=a" where0<a<lor a>]1,

is an exponential function with base a and exponent (or index) x.
R e

If a > 1 the graph of the exponential function increases rapidly. This is called a
growth function.

For the graph of y = 4*

. . \

* yisalways positive | (' ! h)
* it never touches the x-axis
" it crosses y-axisat (0, 1)
a

it goes through the point (1, 4)
" itis increasing

(0))

To Xoxis & wl agmpion |
The G gers Cleser and Closa oW bt
flewer foutes or Crosses it

If 0<a<1 the graph of the exponential function decreases rapidly. This is called a
ANSA—
decay function.

For the graph of y = (L)

y is always positive

it never touches the x-axis

it crosses y-axisat( 0 , 1)

it goes though the point (1, §)

it is decreasing
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AS 1.1 Applying Algebraic Skills to Logarithms and Exponentials

A Special Growth Function

The function
y=¢

is called the exponential function to the base e and is a special exponential function
which plays an important role in mathematics.

e= lim(1+

n—om

1
n
=2.71828......

Sincee>1, y=¢€" isa growth function.

(18)

/ ©))

O

Note y=¢€"is sometimes written y = exp(x)

Examples

1. Calculate yt_o 3 jigniﬁcant figures. - [,& M eﬂ
(@ y=S5¢ ©)y=2¢ butier. o
Y 369 (3s) Y 0602 (3s) Yoor alwlake

2. The number of bacteria of a particular strain is given by the formula
B(t) - Bon.O‘)t

where By is the initial number of bacteria and t is the number of hours since the
.experiment began.
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AS 1.1 Applying Algebraic Skills to Logarithms and Exponentials

(a) If By = 2000, calculate the number of bacteria present after 5 hours.

0,
(b) How many whole years would it take for the number of bacteria to more than
double?

@ B boe™ bo 2000 t=5
y S - Zom QO.OQXS' |
1) = 3137 (o negest ool Numbes )
) Fr o hadend b dwbh ned BH) > W0
% Ue ol and ener
B(é)_. Z(X)OKQ 0.04x6
=33
B(7)- 3155 _,
Rs)> WA It Wil toke 8 hows

Page 4 Exercise 1A

Logarithmic Functions

The logarithmic function is the inverse of the exponential function.

If y=a" then x=logy \;\(‘ LEAPJ\)
f ]
\ /
Da.aL hose a.

Note vy is always positive so you cannot take the log of a negative number KW

Examples

1. Express each exponential function as a logarithm.

(a) 4 =16 (b) y=5* (c) *

p=s
@f S (b s

22 gy b b+ lgs y 3= logs p
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2. Express each log function as an exponential.

(a) 3=log,125 (b) y =log,, 200 (c)3t=log,, p
Ve s N bae Y bose )
5= 15 0¥ = 200 0%+

3. Calculate the value of a in each question.

(i Iy

(a)a= log, 9 (b) log, 16 =4
o it = qU m(ﬂf&ﬁ ue
, q.- - CD a
:iyi a2 m&gg\uhs
(c) log,a=3 (d) a=log,, 16
a- 23 = bl
ERS 2u. @a)‘t
Zu__ 2 éa
S0 L=t
(e)a= log, 81 Qs
:l Y
81~ (;;)L
34 - G-\)ct
3\-\ = 3"(:{—
» -0l

-
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The Laws of Logarithms

It can be shown that for logs of the same base, the following relationships occur.
These are known as the laws of logs.

log,1=0
log,a=1 X
log, x+log, y =log,(xy) X LE}\QI\)
log, x—log, y = log“(ij
y
log, x" =nlog, x
Examples
1. Simplify the following as far as possible
(a) log,4+log,8 (b) log,9+log,8—1log, 2
=g, 32 ,) mm%wcro = (00098
i 5 DOk 1Y Psible. 2 ,
’_'09? : _ - |096 3, = icybful = 2'\0356
’\5 IQ\?‘J?’Z = b ( -

(c) logx5 —logx+ logi,
e

g, X% A Tor Wﬁwﬂb Wk
% X no hase Indialed "Bum y
= \%/XL mﬂﬂlb lig,o
- 2\%«
2. Evaluate
@ log, 64 () log, "

Slg e - gy S lg g
\%uu Sl - ’ 9
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3. Simplify 210g,05+510g]02+log1033—loglo 6’

\09\0 SO,
\NSid

Yy
S
>
N
S
=t<
S/
i
Y
Q@
Cs:
O

. itgm 5% 25 3 ovpne.— adel

i
O supi ﬁ)@; Iy

4. Simplify logx® +log——2logx

= logoes J - \%%’-

= o /\5)(
J A
= L()gl
=0

5. If log,y=1log,8+3log, x express y in terms of x.

106 y=  l0oga8 1 10gar®
0 Y- loge 8¢
L\j: &3

Page 9 Exercise 1C

The Natural Logarithm

The inverse of the exponential function y = €* is called the natural logarithm
=log, x

=log, x can also be written as Inx
Note log,, x is written as logx on the calculator

log, x iswrittenas Inx
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AS 1.1 Applying Algebraic Skills to Logarithms and Exponentials

Examples
1. Express in exponential form
(a) y=log,5
Nhoe .
5 = e Y

2. Express in log form
(@) y=¢'

7- by
7 by

2Ine? +3lne -Ine®

- Ineuy fpes-fnee

3. Simplify

=l euxesd
.eﬁ
- ne

= |

Using Logs in Solving Equations

Type 1 Types which can be written

Method Change to exponentials

Example

1. Solvefor x>0 Inx=5-6
X et
Xe 0.

(b) y=log, 3¢

3t- ey
(b) k=¢
3= (Lgeh

3r- Inp

,/_\/VW\

SINe e = |

Page 11 Exercise 1D

log (something) = number
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2. Solve 10g|2x+10g2(x—2)=3 ) |MK [Uf o lU(
OQX (X-2)=3

et ()0
X-4) (X+2)
Xl o <2 NA

e of X are Suta
= @ e e Ug 0
L Y@ahuf.

3. Solve log,2x+log,25= ‘L—W—\,.\

" (oses et SO ot Cibiy

fogs 2x + e Z{S 5= b Sl 95- 52
10gs 2% ¥ 55 =

0 214 =4
‘093 Z AT 2—- Page 12 Exercise 1E Questions 1,2 and §
ZX 3¢ Page 15 Exercise 1G
X= U
2 .

Type 2 Equations that can be written log(something) = log(something)
N NN N e

Method " If logx=logy then x=y

Example

1. Solve log, x+1log, 5 =1log, 35

(RIS by 5% - g5

O 5X-35

2. Solve log,(2x+1)+log,(3x-10)=log, 11x
logy (2x#) (3%-10)+ luge I1X

(2x31) (3% H0)- 11
GOG‘DX~IO = (X

ex=-28 X0 00 Sl
3N HlX-5= ' 5
(3%+1) (%-3) =0 s Ohir OE <
Aot 5 R A= QUE 3
NAS g (nggphie no.)
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AS 1.1 Applying Algebraic Skills to Logarithms and Exponentials

Note The domain means the x numbers used.

If the question asks about a suitable domain it is asking you to check that your

x numbers do not lead to finding the log of a negative number which is not
possible.

Page 13 Exercise 1F

Type 3 Unknown is a power (exponent)

Method Either change straight to logs or take logs of both sides

Example
1 Solve (a) 5" =50 (b) ™' =50
Mhod © Melhod @ Manad 0 Mehod ©
5X=10) 16g5%= lgg50 K- e pp
s [0355-0 ’Xl\)-Cp u430 = QVH:) | (Z)(:—[)Mf’ I
) . € loc |
= 21303 §) u 2%H= Ih SO
%(339 A B y > Ens'o—l
(¢) 10e" =200 -l ub@s §)
« % Dnde by 0 fist
Q1500
od @ Mhod @
lbk‘JUIZO e st o
ﬂ“ZU \.Stﬁne:iznzo
|.5t= Mo
t= zo (3sf
O ) t: MZ,_O
|.5
= 2,00 (3sf)

Page 12 Exercise 1E Questions 3 and 4
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Applications of Exponential Functions

Examples

1. A young tree, supplied by a nursery, is 4 metres tall but has annual growth of 5%
of its height at the start of each year.
How long does it take the tree to double in height ?

5% Wnceox = 105%  alfogeier
=[.05
ot 1= nomer of
Mw haghi = lix 103+
We wmd  Lx l.05"- g
|.05"- 2.
n-= lQCJmSl
- e yeas BS’H

2. The air pressure of a life raft falls according to the formula P = P,e *, where

P, is the pressure at time t hours and k is a constant.

(a) At time zero the pressure is 80 units. 12 hours later it is 60 units.
Find the value of k to two significant figures.

(b) When the pressure is below 40 units the raft is unsafe. From time zero,
for how long is the raft safe to use?

@ W 0 D=8 (b P10 R-0.02

W i Pu 40 Sl = goe ot
I e pe-bt 05+ e 0%t
{0 = spetk -0.02ut: In0.5
0B - e-lU‘ = M—
k= o7 -0.02
R o.7s = 24 hab.
=1 (256
2= 0.02¢ (28f) T mﬁ 8 Sl o we
29 houts
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3. U™ is a radioactive isotope of uranium. It decays into lead according to the law
m =mye" where m, is the mass of U™ originally present and m is the mass
present after ¢ years.

a) The half-life of U*”, i.e. the time taken for half of the isotope to decay, is
7x10® years. find the value of k correct to two significant figures.

b) A sample of rock contains 20mg of U ***. How long will it be before this is
reduced by 0.5mg?

¢) The age of the earth is estimated to be 5.25x10° years. What fraction of the
U** present at its formation is still around today?

@ M= 1M when 4= TX10

; ' - .o Rt
e Ycle M= mee * 3
iy - m, ¢ (X0 b

05> o (Tx10°) .
(7x0¥ )= 0.5

k= 0§
X108

k= -Gauip™ (2]
B m-20 A5 k--9axi0™

S M= Mpek Ol 145 - zoe(*?-‘lfl?““’)t
45 = pCau™);

W s
.ecmxéo Jt 1 an(__j)
- 0Aarw
4—’(?800“0
b= 2551503 Uarip
= 2.6 XU b%b (23

€ b uBx0 s R ;M- he®
n. e~ ™ x 5. 25x |
1

M- 0.0055
Mo 55
100

" 2w

Page 16 Exercise 1H
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Applications of Logarithms

Example
Two sound intensities P; and P, are said to differ by n decibels when

P
n=10log,, —=
Eio P
where P; and P, are measured in phons and P, > P, .
Rustling leaves have typical sound intensity of 30 phons. If the sound intensity of a
fire alarm is 6.5 decibels greater that rustling leaves, what is the sound intensity of the
fire alarm siren?

b= 30
P
n 65
e Yae - lO\@m %

8

6.5- 10 log, ;%

£5= b
0.6 wf]u)&_)

Crungg. o e
bo- o
a0 0.65

= B @W)F\S (SSN

0.65

Page 18 Exercise 11
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Interpreting Experimental Data

Data obtained by experiment is often used to determine a relationship or formulae
between the variables involved.

This graph shows a linear
(straight line) relationship between y and x. (9({(({[01& M

The formula is

y=mx-+c¢ /C

where m is the gradient of the line > X
and c is the y intercept.

If instead of a linear relationship between the variables there is an exponential growth
or decay function then logarithms can be used to find the equation.

If logy plotted against logx gives a straight line then y and x are related by the
formula y = ax® where a and b are constants that can be found from the graph.

If logy plotted against x gives a straight line then y and x are related by the formula
y =ab" where a and b are constants that can be found from the graph.

Example

1. Collected data is processed and plotted to obtain the graph shown below.
Show that the graph represents a function of the form y = ax”.
Determine the values of a and b.

Sh*«){th ling

log,, W+C
“gpy bur hb%
2 y= Migextc.

_%li/xzj 2
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2. Data from an experiment gives the following graph.
log z

A

v

The points A(2.5, 1.456) and B(8.0, 3.09) are 2 points on the straight line. Determine

the specific relat{onship between z and n.
Shaght e y= e
e g = mic
o M= 309- 1456
8.O-25
= 0.y
T fd 0 sl ponl A (aB)
| 456 = 0.30x 2.54¢
Cs 0.7
SO \99-2: 0300t 0,7

@W 0 \Ml@; 0.30u+ 0.7
z= IO
2 = l00-3>0i;\ IOO."II
2= (0" M5B
z= B2 (Sli’l@

Cfe Higher Maths Unit 1 Expressions And Functions
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3. The results from an experiment give rise to the graph shown.

P A

(a) Write down the equation of the
line in terms of P and Q.

(b) Given that P = Inp and Q = Ing,
show that p and ¢ satisfy the
relationship p = aq®, and

1.8 determine the values of ¢ and b.
3 0 > Q

@ Shaght ey mxic.
He  Pema+c .

m- @ C:= lg
0'(,"3)
=04
o P=06@F\E

b Wt by @- g
lip= 068 4 18
ey up - ogether
Inp= O,C\beg : |.8
By~ g% 18

0.
Z b ) Page 21 Exercise 1J
0.4

GObg (35-F)
§o Q= 6.05 p= 0%

—_—
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