Exponential Functions and their Graphs

$$y = a^x$$

where 0 < a < 1 or a > 1,

is an exponential function with base a and exponent (or index) \underline{x} .

note
When a=1, y=1

Which is a

Straight line

paratel to x-axi

If a > 1 the graph of the exponential function increases rapidly. This is called a **growth function**.

For the graph of $y = 4^x$

- y is always positive
- it never touches the *x*-axis
- it crosses y-axis at (0, 1)
- it goes through the point (1, 4)
- it is increasing

sitive
s the x-axis
s at (0,1)
the point (1,4)

The x-axis is an asymptote
The graph gets closer and closer to it but
never to whes ar crosses it

If 0 < a < 1 the graph of the exponential function decreases rapidly. This is called a **decay function**.

For the graph of $y = (\frac{1}{4})^x$

- y is always positive
- it never touches the x-axis
- it crosses y-axis at (0, 1)
- it goes though the point $(1, \frac{1}{4})$
- it is decreasing

1

A Special Growth Function

The function

$$y = e^x$$

is called the exponential function to the base e and is a special exponential function which plays an important role in mathematics.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n}$$
$$= 2.71828...$$

Since e > 1, $y = e^x$ is a growth function.

 $y = e^x$ is sometimes written y = exp(x)Note

Examples

1. Calculate y to 3 significant figures.

(a)
$$y = 5e^2$$

 $y = 36.9$ (35.f)

(b)
$$y = 2e^{-0.2 \times 6}$$

 $y = 0.602 (3s.f)$

(b) $y = 2e^{-0.2 \times 6}$ Use the e^{II} butten on y= 0.602 (3s.f) year calculate

2. The number of bacteria of a particular strain is given by the formula

$$B(t) = B_o e^{0.09t}$$

where B₀ is the initial number of bacteria and t is the number of hours since the experiment began.

- (a) If $B_0 = 2000$, calculate the number of bacteria present after 5 hours.
- bus.
 (b) How many whole years would it take for the number of bacteria to more than double?

(a)
$$B(t) = Bo e^{0.09t}$$
 $Bo = 2000 t = 5$
 $B(5) = 2000 e^{0.09x5}$
 $= 3137$ (to nearest whole number)

For backens to double need B(t) > 4000 * Use trial and error

It will take 8 hours

Page 4 Exercise 1A

Logarithmic Functions

The logarithmic function is the inverse of the exponential function.

LEAKN

Note y is always positive so you cannot take the log of a negative number

Examples

1. Express each exponential function as a logarithm.

(b)
$$y = 5^4$$

$$4 = 1005$$

(c)
$$p = s^{3t}$$

$$3t = \log_S p$$

2. Express each log function as an exponential.

(a)
$$3 = \log_5 125$$

buse 5

 $5^3 = 125$

(b)
$$y = \log_{10} 200$$

Thus 10

 $10^{19} = 200$

(c)
$$3t = \log_{10} p$$

That to

 \hat{C}

3. Calculate the value of a in each question.

(a)
$$a = \log_3 9$$

$$3^9 = 9$$

$$0=2$$

(b)
$$\log_a 16 = 4$$

 $16 = 04$
 $0 = 2$

(c)
$$\log_2 a = 3$$

 $Q = 2^3$
 $Q = 8$

(d)
$$a = \log_{64} 16$$
 $16 = 64^{9}$
 $2^{4} = (2^{6})^{9}$
 $2^{4} = 2^{6a}$
 $50 = 4^{6}$
 $a = \frac{2}{3}$

(e)
$$a = \log_{\frac{1}{3}} 81$$

 $81 = (\frac{1}{3})^{\alpha}$
 $34 = (3-1)^{\alpha}$
 $34 = 3-\alpha$
 $34 = 3-\alpha$
 $34 = 3-\alpha$

The Laws of Logarithms

It can be shown that for logs of the same base, the following relationships occur. These are known as the **laws of logs**.

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a x + \log_a y = \log_a (xy)$
- $\log_a x \log_a y = \log_a \left(\frac{x}{y}\right)$
- $\log_a x^n = n \log_a x$

Examples

1. Simplify the following as far as possible

(a)
$$\log_2 4 + \log_2 8$$

 $= \log_2 32$
 $= \log_2 25$
 $= 5 \log_2 2 = 5$

write as power of base if passible

$$=2\log x$$

(b) $\log_6 9 + \log_6 8 - \log_6 2$ $= |g_6|_{36} = |g_6|_{6}^2 = 2|g_6|_{6}$ = 2

note if we write log with base indicated this usually means

2. Evaluate

(a)
$$\frac{1}{3}\log_4 64$$

= $\log_4 64^{\frac{1}{3}}$
= $\log_4 4$

$$= \log_4 64$$

$$= \log_4 64^{\frac{1}{3}} \text{ or } \frac{1}{3}\log_4 4^3 = 6\log_4 y$$

$$= \log_4 4 + 3 = 6\log_4 y$$

$$= 3x_3^{\frac{1}{3}}\log_4 4 = 6$$

(b)
$$\log_y y^6$$

$$= 6 \log y y$$

$$= 6$$

3. Simplify
$$2\log_{10} 5 + 5\log_{10} 2 + \log_{10} 3^3 - \log_{10} 6^3$$

= $\log_{10} 5^2 + \log_{10} 2^5 + \log_{10} 3^3 - \log_{10} 6^3$

= $\log_{10} \frac{5^2 \times 2^5 \times 3^3}{6^3}$ Combine adding $\log ->$ multiply subtracting $\log ->$ clivide

= $\log_{10} \log_{10} \log_{10} = 2$.

4. Simplify
$$\log x^3 + \log \frac{1}{x} - 2\log x$$

$$= \log x^3 + \log \frac{1}{x} - \log x^2$$

$$= \log \frac{x^3 + \log x}{x^2}$$

$$= \log 1$$

$$= 0$$

5. If
$$\log_a y = \log_a 8 + 3\log_a x$$
 express y in terms of x.
 $\log_a y = \log_a 8 + 3\log_a x$ express y in terms of x.
 $\log_a y = \log_a 8 + 3\log_a x$ express y in terms of x.
 $\log_a y = \log_a 8 + 3\log_a x$ express y in terms of x.

Page 9 Exercise 1C

The Natural Logarithm

The inverse of the exponential function $y = e^x$ is called the natural logarithm $y = \log_e x$

 $y = \log_e x$ can also be written as $\ln x$

Note $\log_{10} x$ is written as $\log x$ on the calculator $\log_e x$ is written as $\ln x$

Examples

1. Express in exponential form

(a)
$$y = \log_e 5$$

 $5 = e^{4}$

(b)
$$y = \log_e 3t$$

2. Express in log form

(a)
$$y = e^{7}$$

 $7 = \log ey$
 $7 = \ln y$

(b)
$$k = e^{3r}$$

3. Simplify
$$2\ln e^2 + 3\ln e - \ln e^6$$

$$= \ln e^4 + \ln e^3 - \ln e^6$$

$$= \ln \frac{e^4 \times e^3}{e^6}$$

$$= \ln e$$

$$= 1$$

Page 11 Exercise 1D

Using Logs in Solving Equations

Type 1 Types which can be written \log (something) = number

Method Change to exponentials

Example

1. Solve for
$$x > 0$$
 $\ln x = 5.6$ (MSE e)

 $X = e^{5.6}$
 $X = 270.4$ (1 d.p)

Use calculator

× kemember to check that values of a are surtable -> can be have the log of

a negative

3. Solve $\log_3 2x + \log_5 25 = 4$

bases different so conit combine but spot

$$\begin{array}{r} \log_3 2x + \log_5 5^2 = 4 \\ \log_3 2x + 2\log_5 5 = 4 \\ \log_3 2x + 2 = 4 \\ \log_3 2x = 2 \\ 2x = 3^2 \\ x = \frac{q}{2} \end{array}$$

Page 12 Exercise 1E Questions 1,2 and 5 Page 15 Exercise 1G

Type 2 Equations that can be written log(something) = log(something)

Method

$$(If log x = log y then x = y)$$

Example

1. Solve $\log_a x + \log_a 5 = \log_a 35$

combine logs on RHS

2. $\log_a (2x+1) + \log_a (3x-10) = \log_a 11x$ Solve logn (2x+1) (3x-10)= luga 11x (2x+1) (3x-10)= 11x 6x2-17x-10= 11x

Soluhin 1=5

8

Note The domain means the x numbers used.

If the question asks about a suitable domain it is asking you to check that your x numbers do not lead to finding the log of a negative number which is not possible.

Page 13 Exercise 1F

<u>Type 3</u> Unknown is a power (exponent)

Method Either change straight to logs or take logs of both sides

<u>Example</u>

1 Solve (a)
$$5^{x} = 50$$
 (b) $e^{2x+1} = 50$

Method 0. Method 2. Method 2. Method 0. Method 0. Method 2. Method 0. Method 0. Method 2. Method 0. Method 2. Method 0. Method 0.

Page 12 Exercise 1E Questions 3 and 4

Applications of Exponential Functions

Examples

1. A young tree, supplied by a nursery, is 4 metres tall but has annual growth of 5% of its height at the start of each year.

How long does it take the tree to double in height?

- 2. The air pressure of a life raft falls according to the formula $P_t = P_0 e^{-kt}$, where
- P_t is the pressure at time t hours and k is a constant.
- (a) At time zero the pressure is 80 units. 12 hours later it is 60 units. Find the value of k to two significant figures.
- (b) When the pressure is below 40 units the raft is unsafe. From time zero, for how long is the raft safe to use?

(a) When t=0
$$P_0 = 80$$
 (b) $P_t = 100$ $R = 0.024$ When $t = 12$ $P_{11} = 10$ 80 $10 = 80e^{-0.024t}$ $0.5 = e^{-0.024t}$ $0.5 = e^{-0.024t}$ $0.75 = e^{-12t}$ $0.75 = e^{-12t}$ 10.75 $12k = 10.75$ $12k = 10$

- 3. U²³⁵ is a radioactive isotope of uranium. It decays into lead according to the law $m = m_0 e^{kt}$ where m_0 is the mass of U²³⁵ originally present and m is the mass present after t years.
 - a) The half-life of U²³⁵, i.e. the time taken for half of the isotope to decay, is $7x10^8$ years. find the value of k correct to two significant figures.
 - b) A sample of rock contains 20mg of U ²³⁵. How long will it be before this is reduced by 0.5mg?
 - c) The age of the earth is estimated to be 5.25x10° years. What fraction of the U ²³⁵ present at its formation is still around today?

(a)
$$M = \frac{1}{2}M_0$$
 when $\frac{1}{4} = 7 \times 10^6$

We have $M = M_0 e^{Rt}$
 $\frac{1}{2}M_0 = M_0 e^{Rt}$

(b) $M_0 = 20$ $M = [9.5]$ $k = -9.9 \times 10^{-10}$
 80 $M = M_0 e^{Rt}$ Ques $\frac{19.5}{20} = 20e^{\frac{19.5}{20}}e^{\frac{19.5}{20}}$
 $19.5 = e^{-9.9} \times 10^{-10}e^{Rt}$
 $19.5 = e^{-9.9}$

Applications of Logarithms

Example

Two sound intensities P₁ and P₂ are said to differ by n decibels when

$$n = 10\log_{10} \frac{P_2}{P_1}$$

where P_1 and P_2 are measured in phons and $P_2 > P_1$.

Rustling leaves have typical sound intensity of 30 phons. If the sound intensity of a fire alarm is 6.5 decibels greater that rustling leaves, what is the sound intensity of the fire alarm siren?

$$P_{1} = 30$$
 $P_{2} = ?$
 $N = 6.5$

We have $N = |0| \log_{10} \frac{P_{2}}{P_{1}}$
 $0.65 = |0| \log_{10} \frac{P_{2}}{30}$

Change to India
$$\frac{P_{2}}{30} = |0|^{0.65}$$

$$\frac{P_{2}}{30} = 30 \times 10^{0.65}$$

$$= |34| \text{ phons} \quad (3s.f.)$$

Page 18 Exercise 1I

Interpreting Experimental Data

Data obtained by experiment is often used to determine a relationship or formulae between the variables involved.

This graph shows a linear (straight line) relationship between y and x.

The formula is

$$y = mx + c$$

where m is the gradient of the line and c is the y intercept.

If instead of a linear relationship between the variables there is an exponential growth or decay function then logarithms can be used to find the equation.

If logy plotted against logx gives a straight line then y and x are related by the formula $y = ax^b$ where a and b are constants that can be found from the graph.

If logy plotted against x gives a straight line then y and x are related by the formula $y = ab^x$ where a and b are constants that can be found from the graph.

Example

1. Collected data is processed and plotted to obtain the graph shown below. Show that the graph represents a function of the form $y = ax^b$. Determine the values of a and b.

2. Data from an experiment gives the following graph.

The points A(2.5, 1.456) and B(8.0, 3.09) are 2 points on the straight line. Determine the specific relationship between z and n.

Shought line
$$y = mx + c$$
.

Here $log z = m n + c$.

and $m = 3.09 - 1.456$
 $8.0 - 2.5$
 $= 0.30$
 $log z = 0.30 n + c$.

To Rind C substitute point A (at B) (2.5, 1.456)
 $l.456 = 0.30 \times 2.5 + c$
 $c = 0.71$
So $log z = 0.30 n + 0.71$
Change to Indias
$$z = lo = 0.30 n + 0.71$$

3. The results from an experiment give rise to the graph shown.

- (a) Write down the equation of the line in terms of P and Q.
- (b) Given that $P = \ln p$ and $Q = \ln q$, show that p and q satisfy the relationship $p = aq^b$, and determine the values of a and b.

(a) Straight line
$$y = mx + c$$
.
Here $P = m6x + c$.
 $m = \frac{1.8 - 0}{0 - (-3)}$ $c = 1.8$
 $= 0.6$
 80 $P = 0.66 + 1.8$

(b) Put P= lnp &= ln q
lnp= 0.6 lnq + 1.8
Get lugs together
lnp= 0.6 lnq = 1.8
ln p- ln
$$q^{0.6}$$
 = 1.8
ln $q^{0.6}$ = 1.8
Change to Indias $p^{0.6}$ = e.18
 $p^{0.6}$ = e.18

Page 21 Exercise 1J