Straight Line Past Papers Unit 1 Outcome 1

Multiple Choice Questions

Each correct answer in this section is worth two marks.

1. The line with equation y = ax + 4 is perpendicular to the line with equation 3x + y + 1 = 0.

What is the value of *a*?

A.
$$-3$$

B.
$$-\frac{1}{3}$$

C.
$$\frac{1}{3}$$

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
С	1.1	С	0.7	0.62	NC	G2, G5	HSN 089

$$3x+y+1=0$$

 $y=-3x-1$. So $m_x=-3$. Compare to $y=mx+c$

The line y = ax + 4 has gradient $m_z = a$

Since the lines are perpendicular, mx x m2 = -1, ie

$$-3a = -1$$

$$a = \frac{1}{3}$$

Option C

[END OF MULTIPLE CHOICE QUESTIONS]

Written Questions

2. Find the equation of the perpendicular bisector of the line joining $A\left(2,-1\right)$ and [SQA] B(8,3).

4

	marks	Unit	וסת	n-calc	Ca	de	cal	c neut	Conte	nt Reference:	1.1
part	marks	Oldi	С	A/B	С	A/B	C	A/B	Main	Additional	1
	4	1.1					4		1.1.1	1.1.9	Source
<u> </u>		•••					,			1.1.7	1996 P1 qu.1

3. Find the equation of the straight line which is parallel to the line with equation [SQA] 2x + 3y = 5 and which passes through the point (2, -1).

3

Part Marks	Level	Calc.	Content	Answer	U1 OC1
3	С	CN	G3, G2	2x + 3y = 1	2001 P1 Q1

- ss: express in standard form
 ic: interpret gradient
- 3 ic: state equation of straight line
- $y = -\frac{2}{3}x + \frac{5}{3}$ stated or implied by $m_{\text{line}} = -\frac{2}{3}$ stated or implied by $m_{\text{line}} = -\frac{2}{3}$ stated or implied by $m_{\text{line}} = -\frac{2}{3}(x 2)$

4. Find the equation of the line through the point (3, -5) which is parallel to the line with equation 3x + 2y - 5 = 0.

2

	marks Unit		non-calc		calc		calc neut		Content Reference:		1.1	
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main	Additional		
	•						_		,,,,	110	Source	
	2	1.1					2]	1.1.7	1.1.8	1991 P1 qu.1	

- $m = -\frac{3}{2}$ stated or implied by x^2 $y (-5) = -\frac{3}{2}(x-3)$

[SQA]

2

3

[SQA]

5.

A and B are the points (-3, -1) and (5, 5). Find the equation of

- (a) the line AB
- (b) the perpendicular bisector of AB.

1.1	-{		calc neut		lc	calc		no	T 724	rt marks Unit	
	Additional	Main	A/B	C	A/B	С	A/B	C	Unit	marks	part
Source		1.1.7		2					1.1	2	(a)
1999 P1 qu.2		1.1.10		3					1.1	3	(b)

 $m_{AB} = \frac{3}{4}$

- \bullet^3 $m_{\perp} = -\frac{4}{3}$
- •² $y-5=\frac{3}{4}(x-5)$ or $y-(-1)=\frac{3}{4}(x-(-3))$
- 4 midpoint = (1,2)
- •5 $y-2=-\frac{4}{3}(x-1)$

[SQA]

6. Find the size of the angle a° that the line joining the points A(0,-1) and $B(3\sqrt{3},2)$ makes with the positive direction of the x-axis.

3

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	3	С	NC	G2	30	2000 P1 Q3

- •¹ ss: know how to find gradient or equ.
- $\bullet^1 \quad \frac{2-(-1)}{3\sqrt{3-0}}$

•² pd: process

- 2 tan a = gradient stated or implied by
- 3 ic: interpret exact value
- $^3 a = 30$

2

1

[SQA] 7. The line AB makes an angle of $\frac{\pi}{3}$ radians with the y-axis, as shown in the diagram. Find the exact value of the gradient of AB.

	t marks Unit		no	n-calc	calc		calc neut		Content Reference:	1.1
part	marks	Diat	C	A/B	С	A/B	C	A/B	Main Additional	
									1.17	Source
1	2	1.1						2	1.1.7	1999 P1 qu.7

- •1 "correct angle" = $\frac{\pi}{2} \frac{\pi}{3}$
- 2 $\frac{1}{\sqrt{3}}$
- [SQA] 8. The lines y = 2x + 4 and x + y = 13 make angles of a^c and b^c with the positive direction of the x-axis, as shown in the diagram.

(b) Hence find the acute angle between the two given lines.

		Y Inda	nor	n-calc	Ca	lc	cal	c neut	Content Referen	
part	marks	Unit	С	A/B	C	A/B	С	A/B	Main Addition	al I-I
(a)	4	1.1			4		,		1.1.3	Source
(b)	1	0.1			1				0.1	1993 P1 qu.10

- $a^1 \tan a^0 = 2$
- $a = 63.4^{\circ}$
- $a^3 \tan(180-b)=1$
- 4 h-135
- 5 180-a-(180-b) or equiv. to b-a

[SQA] 9. A triangle ABC has vertices A(4, 8), B(1, 2) and C(7, 2).

(a) Show that the triangle is isosceles.

- (2)
- (b) (i) The altitudes AD and BE intersect at H, where D and E lie on BC and CA respectively. Find the coordinates of H.
- (7)

(1)

(ii) Hence show that H lies one quarter of the way up DA.

	marks	Unit	nor	1-calc	ca	lc	calo	neut	Content Reference:	1.1
part	marks	Oill	С	A/B	С	A/B	С	A/B	Main Additional	
(a)	2	1.1					2		1.1.2	Source 1995 Paper 2
(b)	8	1.1					8		1.1.10, 0.1	Qu.1

- (a) Calculate the length of the sides
 - $AB = AC = \sqrt{3^2 + 6^2}$
- (b) 3 knows to find equ. of an altitude
 - 4 $m_{AC} = -2$
 - $\bullet^5 \qquad m_{\rm BE} = \frac{1}{2}$
 - •6 $y-2=\frac{1}{2}(x-1)$
 - x = 4 stated or implied
 - •8 knows how to find intersection
 - $H = (4, \frac{7}{2})$
 - 10 DA = 6 and $DH = 1\frac{1}{2}$

3

[SQA] 10. P(-4,5),Q(-2,-2) and R(4,1) are the vertices of triangle PQR as shown in the diagram. Find the equation of PS, the altitude from P.

		Unit	no	n-calc	CE	calc		c neut	Content Reference :		1.1
part	marks	Onic	C	A/B	C	A/B	С	A/B	Main	Additional	
	3	1.1					2		1.1.1	1.1.9, 1.1.7	Source
Ŀ	3	1.1					٠		1.1.1	1.1.5, 1.1.7	1997 P1 qu.1

- $\bullet^1 \qquad m_{QR} = \frac{1}{2}$
- $_{\circ}^{2}$ $m_{\rm DM} = -2$
- •3 PN: y-4=-2(x+3)

[SQA] 11. A triangle ABC has vertices A (-4, 1), B (12, 3) and C (7, -7).

- (b) Find the equation of the altitude AD.
- (c) Find the coordinates of the point of intersection of CM and AD.

		Unit	no	n-calc	ca	lc	cal	c neut	Conte	nt Reference :	1.1
part	marks	Unit	C	A/B	C	A/B	С	A/B	Main	Additional	
(a)	3	1.1					3		1.1.7		Source
(b)	3	1.1	1				3		1.1.7	1.1.9	1999 Paper 2
(c)	3	0.1					3		0.1		Qu. 1

(a)
$$\bullet^1$$
 midpoint = $(4,2)$

$$m_{MC} = -3$$

•3
$$y-2=-3(x-4)$$
 or $y-(-7)=-3(x-7)$

(b)
$$e^4 m_{PC} = 2$$

$$\bullet^5$$
 $m_{\perp} = -\frac{1}{2}$

$$y-1=-\frac{1}{2}(x-(-4))$$

(c)
9
 e.g. $3x+y=14$ and $x+2y=-2$

•8 attempt to eliminate a variable

[SQA] 12. A triangle ABC has vertices A(4, 3), B(6, 1) and C(-2, -3) as shown in the diagram. Find the equation of AM, the median from A.

part	marks	Unit	no	n-calc	calc		cal	c neut	Content Reference :		11
part	marks	Onn	С	A/B	С	A/B	С	A/B	Main	Additional	1.1
	3	1.1			,		3		1.1.6	1.1.7	Source
Ĺ	·								1.1.0		1998 P1 qu.1

1
 M = $(2,-1)$

$$m_{AM} = 2$$

$$y-(-1)=2(x-2)$$

- [SQA] 13. In the diagram A is the point (7,0), B is (-3,-2) and C(-1,8). The median CE and the altitude BD intersect at J.
 - (a) Find the equations of CE and BD.
 - (b) Find the co-ordinates of J.

1.1	nt Reference :	Conte	c neut	cal	lc	Câ	n-calc	no	T 3 14		
1.1	Additional	Main	A/B	С	A/B	С	A/B	С	Unit	marks	part
Source	1.1.9, 1.1.1	1.1.7						6	1.1	6	(a)
1992 P1 qu.2		1.1.10						2	1.1	2	(b)

•
$$E = (2,-1)$$

$$m_{CE} = -3$$

•
$$y - (-1) = -3(x - 2)$$
 or $y - 8 = -3(x - (-1))$

$$m_{AC} = -1$$

$$m_{BID} = -1$$

$$y - (-2) = 1(x - (-3))$$

$$\bullet^{8}$$
 $J = (1, 2)$

2

3

(3)

(2)

[SQA] 14. ABCD is a square. A is the point with coordinates (3,4) and ODC has equation $y = \frac{1}{2}x$.

- (a) Find the equation of the line AD.
- (b) Find the coordinates of D. (3)
- (c) Find the area of the square ABCD.
- non-calc calc calc neut Content Reference: part marks Unit 1.1 A/B A/B Main Additional Source 1.1 (a) 3 3 1.1.9, 1.1.7 1994 Paper 2 3 3 (b) 0.1 0.1 2 Qu.2 (c) 2 1.1 1.1.2

(a)
$$\bullet^1$$
 using $m_1 m_2 = -1$

$$m_{AD} = -2$$

$$y-4=-2(x-3)$$

(b) • strategy for sim. equations

$$5$$
 $2x + y = 10$ or equiv

·6 (4.2)

(c) • strategy: find length of AD

.8

(3)

[SQA] 15. A triangle ABC has vertices A(-3, -3), B(-1, 1) and C(7, -3).

- (a) Show that the triangle ABC is right-angled at B.
- (b) The medians AD and BE intersect at M.
 - (i) Find the equations of AD and BE.
 - (ii) Hence find the coordinates of M.

	marka	7114	non-calc		calc		calc neut		Content Reference:	1.1	
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main Additional		
(a)	3	1.1					3		1.1.10	Source	
(b)i	5	1.1					5		1.1.10	1996 Paper 2	
(b)ii	3	0.1]				3		0.1	Qu.2	

$$(a) \quad \bullet^1 \qquad m_{AB} = 2$$

•
2
 $m_{BC} = -\frac{1}{2}$

•3
$$m_{AB} \times m_{BC} = -1 \Rightarrow m_{AB} \perp m_{BC}$$

(b)
$$\bullet^4$$
 D = (3,-1) and E = (2,-3)

•
$$m_{AD} = \frac{1}{3}$$

• AD:
$$y+1=\frac{1}{3}(x-3)$$
 or equiv.

$$m_{\rm BE} = -\frac{4}{3}$$

•8 BE:
$$y-1=-\frac{4}{3}(x+1)$$
 or equiv.

- •9 eg clear fractions
- 10 eg substitute
- $x=1, y=-\frac{5}{3}$

16. Triangle ABC has vertices A(-1,6), [SQA] B(-3, -2) and C(5, 2).

Find

- (a) the equation of the line p, the median from C of triangle ABC.
- (b) the equation of the line q, the perpendicular bisector of BC.
- (c) the coordinates of the point of intersection of the lines p and q.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
(a)	3	С	CN	G7	y=2	2002 P2 Q1
(b)	4	С	CN	G7	y = -2x + 2]
(c)	1	С	CN	G8	(0,2)]

- •¹ ss: determine midpoint coordinates
- 2 pd: determine gradient thro' 2 pts
- •3 ic: state equation of straight line
- ss: determine midpoint coordinates
- pd: determine gradient thro' 2 pts
- •6 ss: determine gradient perp. to •5
- 7 ic: state equation of straight line
- •8 pd: process intersection

- \bullet^1 F = mid_{AB} = (-2, 2)
- 2 $m_{\rm FC} = 0$ stated or implied by 3
- 3 equ. FC is y = 2
- \bullet^4 M = mid_{BC} = (1,0)
- $m_{BC} = \frac{1}{2}$ $m_{\perp} = -2$
- $-7 \quad y 0 = -2(x 1)$
- \bullet^{8} (0,2)

17. Triangle ABC has vertices A(2,2), [SQA] B(12,2) and C(8,6).

- (a) Write down the equation of l_1 , the perpendicular bisector of AB.
- (b) Find the equation of l_2 , the perpendicular bisector of AC.
- (c) Find the point of intersection of lines l_1 and l_2 .
- (d) Hence find the equation of the circle passing through A, B and C.

4

1

1

2

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
(a)	1	С	CN	G3, G7	x = 7	2001 P2 Q7
(b)	4	С	CN	G7	3x + 2y = 23	
(c)	1	С	CN	G8	(7,1)	
(d)	2	A/B	CN	G8, G9, G10	$(x-7)^2 + (y-1)^2 = 26$	

- •¹ ic: state equation of a vertical line
- 2 pd: process coord. of a midpoint
- ss: find gradient of AC
- ic: state gradient of perpendicular
- ic: state equation of straight line
- •6 pd: find pt of intersection
- 7 ss: use standard form of circle equ.
- •8 ic: find radius and complete

- $\bullet^1 x = 7$
- \bullet^2 midpoint = (5,4)
- 3 $m_{AC} = \frac{2}{3}$
- $m_{\perp} = -\frac{3}{2}$ $y 4 = -\frac{3}{2}(x 5)$
- 6 x = 7, y = 1
- •⁷ $(x-7)^2 + (y-1)^2$ •⁸ $(x-7)^2 + (y-1)^2 = 26$

or

- $\bullet^7 x^2 + y^2 14x 2y + c = 0$
- •8 c = 24