EP30/H/02

Date - Not applicable
Duration - 1 hour and 30 minutes

Total marks - 70
Attempt ALL questions.
You may use a calculator.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Write your answers clearly in the answer booklet provided. In the answer booklet you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:
$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} or

$$
\mathbf{a . b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

1. A sequence is defined by $u_{n+1}=-\frac{1}{2} u_{n}$ with $u_{0}=-16$.
(a) Determine the values of u_{1} and u_{2}.
(b) A second sequence is given by $4,5,7,11, \ldots$

It is generated by the recurrence relation $v_{n+1}=p v_{n}+q$ with $v_{1}=4$.
Find the values of p and q.
(c) Either the sequence in (a) or the sequence in (b) has a limit.
(i) Calculate this limit.
(ii) Why does this other sequence not have a limit?
2. (a) Relative to a suitable set of coordinate axes, Diagram 1 shows the line $2 x-y+5=0$ intersecting the circle $x^{2}+y^{2}-6 x-2 y-30=0$ at the points P and Q .

Find the coordinates of P and Q .
(b) Diagram 2 shows the circle from (a) and a second congruent circle, which also passes through P and Q .

Determine the equation of this second circle.
3. Find the value of p such that the equation $x^{2}+(p+1) x+9=0$ has no real roots.
4. The line with equation $y=2 x+3$ is a tangent to the curve with equation $y=x^{3}+3 x^{2}+2 x+3$ at $\mathrm{A}(0,3)$, as shown.

The line meets the curve again at B $(-3,-3)$. Find the area enclosed by the line and the curve.
5. $D, O A B C$ is a square-based pyramid as shown.

0 is the origin and $\mathrm{OA}=4$ units.
M is the mid-point of $O A$.
$\overrightarrow{O D}=2 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k}$
(a) Express $\overrightarrow{\mathrm{OB}}$ in terms of \mathbf{i} and \mathbf{j} and \mathbf{k}.
(b) Express $\overrightarrow{\mathrm{DB}}$ and $\overrightarrow{\mathrm{DM}}$ in component form.
(c) Find the size of angle BDM.
6. An equilateral triangle with sides of length 3 units is shown.

Vector \mathbf{r} is 2 units long and is perpendicular to both vectors \mathbf{p} and \mathbf{q}.
Calculate the value of the scalar product $\mathbf{p} \cdot(\mathbf{p}+\mathbf{q}+\mathbf{r})$.
7. The concentration of the pesticide, Xpesto, in soil can be modelled by the equation.

$$
P_{t}=P_{0} e^{-k t}
$$

where:

- P_{0} is the initial concentration;
- P_{t} is the concentration at time t;
- t is the time, in days, after the application of the pesticide.

Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.
(a) If the half-life of Xpesto is 25 days, find the value of k to 2 significant figures.

On all Xpesto packaging, the manufacturer states that 80 days after application the concentration of Xpesto in the soil will have decreased by over 90%.
(b) Is this statement correct? Justify your answer.
8. Given that $\int_{\frac{\pi}{8}}^{a} 5 \sin \left(4 x-\frac{\pi}{2}\right) d x=\frac{10}{4}, 0 \leq a<\frac{\pi}{2}$, calculate the value of a.
9. A manufacturer is asked to design an open-ended shelter, as shown:

The frame of the shelter is to be made of rods of two different lengths:

- x metres for top and bottom edges;
- y metres for each sloping edge.

The total length, L metres, of the rods used in a shelter is given by:

$$
L=3 x+\frac{48}{x}
$$

To minimise production costs, the total length of rods used for a frame should be as small as possible.
(a) Find the value of x for which L is a minimum.

The rods used for the frame cost $£ 8.25$ per metre.
The manufacturer claims that the minimum cost of a frame is less than $£ 195$.
(b) Is this claim correct? Justify your answer.
10. Acceleration is defined as the rate of change of velocity.

An object is travelling in a straight line. The velocity, $v \mathrm{~m} / \mathrm{s}$, of this object, t seconds after the start of the motion, is given by $v(t)=8 \cos \left(2 t-\frac{\pi}{2}\right)$.
(a) Find a formula for $a(t)$, the acceleration of this object, t seconds after the start of the motion.
(b) Determine whether the velocity of the object is increasing or decreasing when $t=10$.
(c) Velocity is defined as the rate of change of displacement.

Determine a formula for $s(t)$, the displacement of the object, given that $s(t)=4$ when $t=0$.

Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Exemplar Question Paper.

> The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on permissions@sqa.org.uk.
> Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the Detailed Marking Instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) Credit must be assigned in accordance with the specific assessment guidelines.
(d) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(e) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(f) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(g) Scored-out or erased working which has not been replaced should be marked where still legible. However, if the scored-out or erased working has been replaced, only the work which has not been scored out should be judged.
(h) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in solutions
- a repeated error within a question

Definitions of Mathematics-specific command words used in this Paper are:

Determine: obtain an answer from given facts, figures or information;
Expand: multiply out an algebraic expression by making use of the distributive law or a compound trigonometric expression by making use of one of the addition formulae for $\sin (A \pm B)$ or $\cos (A \pm B)$;

Express: use given information to rewrite an expression in a specified form;
Find: obtain an answer showing relevant stages of working;
Hence: use the previous answer to proceed;
Hence, or otherwise: use the previous answer to proceed; however, another method may alternatively be used;

Identify: provide an answer from a number of possibilities;
Justify: show good reason(s) for the conclusion(s) reached;

Show that: use mathematics to prove something, eg that a statement or given value is correct - all steps, including the required conclusion, must be shown;

Sketch: give a general idea of the required shape or relationship and annotate with all relevant points and features;

Solve: obtain the answer(s) using algebraic and/or numerical and/or graphical methods.

Detailed Marking Instructions for each question

2	(a)	$\mathrm{P}(-3,-1) \mathrm{Q}(1,7)$	6	
		- ${ }^{1}$ rearrange linear equation $\bullet 2$ substitute into circle - ${ }^{3}$ express in standard form - ${ }^{4}$ start to solve - ${ }^{5}$ state roots - ${ }^{6}$ determine corresponding y coordinates		Substituting for y - ${ }^{1} y=2 x+5$ stated or implied by \bullet^{2} - ${ }^{2} \ldots(2 x+5)^{2} \ldots-2(2 x+5) \ldots$ $\left.\bullet^{3} \quad 5 x^{2}+10 x-15=0\right\}=0$ must appear at the \bullet^{3} - ${ }^{4}$ eg $\quad 5(x+3)(x-1)$ or \bullet^{4} stage to gain \bullet^{3} - ${ }^{5} x=-3$ and $x=1$ - ${ }^{6} y=-1$ and $y=7$ Substituting for x $\bullet^{1} x=\frac{y-5}{2}$ stated or implied by \bullet^{2} $\bullet^{2}\left(\frac{y-5}{2}\right)^{2} \ldots-6\left(\frac{y-5}{2}\right) \ldots$ $\left.\begin{array}{ll}\bullet^{3} & 5 y^{2}-30 y-35=0 \\ \bullet{ }^{4} \text { eg } & 5(y+1)(y-7)\end{array}\right\} \begin{aligned} & =0 \text { must appear at the } \bullet^{3} \\ & \text { or } \bullet^{4} \text { stage to gain } \bullet^{3}\end{aligned}$ - $5=-1$ and $y=7$ - ${ }^{6} x=-3$ and $x=1$
Notes		1At \bullet^{4} the quadratic must lead to two real distinct roots for \bullet^{5} and \bullet^{6} to be2available. 3\quadCross marking is available here for \bullet^{5} and \bullet^{6}. Candidates do not need to distinguish between points P and Q .		

2	(b)	$(x+5)^{2}+(y-5)^{2}=40$ ${ }^{7}{ }^{7}$ centre of original circle \bullet^{8} radius of original circle Method 1: Using midpoint $\bullet{ }^{9}$ midpoint of chord $\bullet{ }^{10}$ evidence for finding new centre - ${ }^{11}$ centre of new circle $\bullet{ }^{12}$ equation of new circle Method 2: Stepping out using P and Q $-{ }^{9}$ evidence of C_{1} to P or C_{1} to Q ${ }^{10}$ evidence of Q to C_{2} or P to C_{2} - ${ }^{11}$ centre of new circle $\bullet{ }^{12}$ equation of new circle	6	- ${ }^{7}(3,1)$ $\bullet^{8} \sqrt{40}$ accept $r^{2}=40$ Method 1: Using midpoint ${ }^{\bullet}{ }^{9}(-1,3)$ ${ }^{10}$ eg stepping out or midpoint formula $\bullet^{11}(-5,5)$ - ${ }^{12}(x+5)^{2}+(y-5)^{2}=40$ Method 2: Stepping out using P and Q - ${ }^{9}$ eg stepping out or vector approach - ${ }^{10}$ eg stepping out or vector approach $\bullet^{11}(-5,5)$ $\bullet^{12}(x+5)^{2}+(y-5)^{2}=40$
Not		4 The evidence for \bullet^{7} 5 Centre $(-5,5)$ witho in method 2 may still working in method 6 $\bullet^{10}, \bullet^{11}$ or \bullet^{12}. 7 The centre must hav not accept, eg $\sqrt{\text { Do }}$ The evidence for \bullet^{8} equation of the seco		may appear in (a). king in method 1 may still gain ${ }^{12}$ but not $\bullet{ }^{10}$ or \bullet^{11}, \bullet^{12} but not $\bullet^{9}, \bullet^{10}$ or \bullet^{11}. Any other centre without not gain $\bullet^{10}, \bullet^{11}$ or \bullet^{12}, in method 2 does not gain \bullet^{9}, clearly indicated before it is used at the \bullet^{12} stage. 39.69 , or any other approximations for \bullet^{12}. t appear until the candidate states the radius or le.
3		$-7<p<5$ ${ }^{-1}$ substitute into discriminant - ${ }^{2}$ know condition for no real roots - ${ }^{3}$ factorise - ${ }^{4}$ solve for p	4	$\begin{aligned} & \bullet(p+1)^{2}-4 \times 1 \times 9 \\ & \bullet^{2} b^{2}-4 a c<0 \\ & \bullet^{3}(p-5)(p+7)<0 \\ & \bullet-7<p<5 \end{aligned}$

4		$\frac{27}{4}$ - ${ }^{1}$ know to integrate and interpret limits - ${ }^{2}$ use "upper-lower" - ${ }^{3}$ integrate - ${ }^{4}$ substitute limits - ${ }^{5}$ evaluate area	5	${ }^{1} \int_{-3}^{0} \ldots \ldots \ldots$ - $\int_{-3}^{0}\left(x^{3}+3 x^{2}+2 x+3\right)-(2 x+3) d x$ - $\frac{1}{4} x^{4}+x^{3}$ - ${ }^{4} 0-\left(\frac{1}{4}(-3)^{4}+(-3)^{3}\right)$ - $5 \frac{27}{4}$ units 2
Notes		```Where a candidate differentiates one or more terms at \bullet 茥 then \bullet4 and \bullet '5 are not available. \\ Candidates who substitute without integrating at \(\bullet^{2}\) do not gain \(\bullet^{3}, \bullet^{4}\) and \(\bullet^{5}\). Candidates must show evidence that they have considered the upper limit 0 at \({ }^{4}\). \\ Where candidates show no evidence for both \(\bullet^{3}\) and \(\bullet^{4}\), but arrive at the correct area, then \(\bullet^{3}, \bullet^{4}\) and \(\bullet^{5}\) are not available. \\ The omission of \(d x\) at \(\bullet^{2}\) should not be penalised.```		
5	(a)	$\overrightarrow{\mathrm{OB}}=4 \mathbf{i}+4 \mathbf{j}$ - ${ }^{1}$ state $\overrightarrow{O B}$ in unit vector form	1	${ }^{1} 4 \mathbf{i}+4 \mathbf{j}$
5	(b)	$\begin{aligned} & \overrightarrow{\mathrm{DB}}=\left(\begin{array}{c} 2 \\ 2 \\ -6 \end{array}\right) \\ & \overrightarrow{\mathrm{DM}}=\left(\begin{array}{c} 0 \\ -2 \\ -6 \end{array}\right) \end{aligned}$	3	
		- ${ }^{2}$ state components of $\overrightarrow{D B}$ - ${ }^{3}$ state coordinates of M - ${ }^{4}$ state components of $\overline{D M}$		$\bullet^{2}\left(\begin{array}{c} 2 \\ 2 \\ -6 \end{array}\right)$ ${ }^{3}(2,0,0)$ stated, or implied by \bullet^{4} $\cdot 4\left(\begin{array}{c} 0 \\ -2 \\ -6 \end{array}\right)$

5	(c)	$40 \cdot 3^{\circ}$ or 0.703 rads	5	
		$-{ }^{5}$ know to use scalar product - ${ }^{6}$ find scalar product \bullet^{7} find magnitude of a vector $\bullet{ }^{8}$ find magnitude of a vector - ${ }^{9}$ evaluate angle BDM		$\bullet{ }^{5} \cos \mathrm{BD} M=\frac{\overrightarrow{\mathrm{DB}} \cdot \overrightarrow{\mathrm{DM}}}{\|\overrightarrow{\mathrm{DB}}\| \cdot\|\overrightarrow{\mathrm{DM}}\|}$ stated or implied by $\bullet 9$ -6 $\overrightarrow{\mathrm{DB}} \cdot \overrightarrow{\mathrm{DM}}=32$ - $7\|\overrightarrow{\mathrm{DB}}\|=\sqrt{44}$ - $\|\overrightarrow{D M}\|=\sqrt{40}$ - ${ }^{9} 40.3^{\circ}$ or 0.703 rads
Notes				
6		$\frac{27}{2}$ - ${ }^{1}$ use distributive law -2 calculate scalar product - ${ }^{3}$ calculate scalar product - ${ }^{4}$ process scalar product =0 and complete	4	${ }^{-1}$ p.p+p.q+p.r -2 p.p $=9$ - ${ }^{3}$ p. $q=\frac{9}{2}$ - ${ }^{4}$ p.r $=0$ and $\frac{27}{2}$
7	(a)	$k \approx 0.028$ ${ }^{1}{ }^{1}$ interpret half-life - ${ }^{2}$ process equation - ${ }^{3}$ write in logarithmic form ${ }^{4}{ }^{4}$ process for k	4	- $\frac{1}{2} P_{0}=P_{0} e^{-25 k}$ stated or implied by \bullet^{2} - $2 e^{-25 k}=\frac{1}{2}$ - ${ }^{3} \log _{e} \frac{1}{2}=-25 k$ ${ }^{\bullet}{ }^{4} k \approx 0.028$
Notes		1 Do not penalise candidates who substitute a numerical value for P_{0} in part (a).		

[END OF EXEMPLAR MARKING INSTRUCTIONS]

