X100/12/02

NATIONAL QUALIFICATIONS 1.00 PM - 2.30 PM 2014

TUESDAY, 6 MAY

MATHEMATICS HIGHER Paper 1 (Non-calculator)

Read carefully

Calculators may NOT be used in this paper.

Section A – Questions 1–20 (40 marks)

Instructions for completion of Section A are given on Page two.

For this section of the examination you must use an HB pencil.

Section B (30 marks)

- Full credit will be given only where the solution contains appropriate working.
- Answers obtained by readings from scale drawings will not receive any credit.

SECTION A

ALL questions should be attempted.

- 1. A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{3}u_n + 1$, with $u_2 = 15$. What is the value of u_4 ?
 - $2\frac{1}{9}$ A
 - $2\frac{1}{3}$ В
 - 3 C
 - 30 D
- The diagram shows a circle with centre C(1, 2) and the tangent at T(3, -1).

What is the gradient of this tangent?

- A
- $\frac{1}{4}$ $\frac{2}{3}$ $\frac{3}{2}$ В
- C
- D

- 3. If $\log_4 12 \log_4 x = \log_4 6$, what is the value of x?
 - A 2
 - B 6
 - C 18
 - D 72
- 4. If $3\sin x 4\cos x$ is written in the form $k\cos(x-a)$, what are the values of $k\cos a$ and $k\sin a$?

	kcosa	<i>k</i> sin <i>a</i>
A	-3	4
В	3	-4
C	4	-3
D	-4	3

- 5. Find $\int (2x+9)^5 dx$.
 - A $10(2x+9)^4+c$
 - B $\frac{1}{4}(2x+9)^4+c$
 - C $10(2x+9)^6+c$
 - D $\frac{1}{12}(2x+9)^6+c$

[Turn over

- 6. Given that $\mathbf{u} = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, find $2\mathbf{u} 3\mathbf{v}$ in component form.
 - $A = \begin{pmatrix} -9 \\ 5 \\ -6 \end{pmatrix}$
 - $B \begin{pmatrix}
 -9 \\
 -1 \\
 -4
 \end{pmatrix}$
 - $C = \begin{pmatrix} -3 \\ -1 \\ 6 \end{pmatrix}$
 - $D \begin{pmatrix} 11 \\ -5 \\ 4 \end{pmatrix}$
- 7. A right-angled triangle has sides and angles as shown in the diagram.

What is the value of sin2a?

- A $\frac{8}{17}$
- $B = \frac{3}{\sqrt{34}}$
- C $\frac{15}{17}$
- $D = \frac{6}{\sqrt{34}}$

- **8.** What is the derivative of $(4-9x^4)^{\frac{1}{2}}$?
 - A $-\frac{9}{2}(4-9x^4)^{-\frac{1}{2}}$
 - B $\frac{1}{2}(4-9x^{-4})^{-\frac{1}{2}}$
 - C $2(4-9x^4)^{-\frac{1}{2}}$
 - D $-18x^3 \left(4 9x^4\right)^{-\frac{1}{2}}$
- 9. $\sin x + \sqrt{3} \cos x$ can be written as $2 \cos \left(x \frac{\pi}{6} \right)$.

The maximum value of $\sin x + \sqrt{3}\cos x$ is 2.

- What is the maximum value of $5\sin 2x + 5\sqrt{3}\cos 2x$?
- A 20
- B 10
- C 5
- D 2
- 10. A sequence is defined by the recurrence relation

$$u_{n+1} = (k-2)u_n + 5$$
 with $u_0 = 3$.

- For what values of k does this sequence have a limit as $n \to \infty$?
- A -3 < k < -1
- B $-1 \le k \le 1$
- C 1 < k < 3
- D k < 3

[Turn over

11. The diagram shows part of the graph of y = f(x).

Which of the following diagrams could be the graph of y = 2f(x) + 1?

A

В

C

D

12. A function f, defined on a suitable domain, is given by $f(x) = \frac{6x}{x^2 + 6x - 16}$.

What restrictions are there on the domain of f?

- A $x \neq -8 \text{ or } x \neq 2$
- B $x \neq -4$ or $x \neq 4$
- C $x \neq 0$
- D $x \neq 10$ or $x \neq 16$
- 13. What is the value of $\sin\left(\frac{\pi}{3}\right) \cos\left(\frac{5\pi}{4}\right)$?
 - $A \qquad \frac{\sqrt{3}}{2} \frac{1}{\sqrt{2}}$
 - $B \qquad \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}$
 - $C \quad \frac{1}{2} \frac{1}{\sqrt{2}}$
 - D $\frac{1}{2} + \frac{1}{\sqrt{2}}$
- 14. The vectors $\mathbf{u} = \begin{pmatrix} 1 \\ k \\ k \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -6 \\ 2 \\ 5 \end{pmatrix}$ are perpendicular.

What is the value of k?

- A $\frac{-6}{7}$
- В –1
- C 1
- D $\frac{6}{7}$

[Turn over

15. The diagram shows a cubic curve passing through (-1, 0), (2, 0) and (0, -8).

What is the equation of the curve?

A
$$y = -2(x+1)^2(x+2)$$

B
$$y = -2(x+1)(x-2)^2$$

C
$$y = 4(x+1)(x-2)$$

D
$$y = -8(x+1)(x-2)^2$$

16. The unit vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a} \cdot \mathbf{b} = \frac{2}{3}$. Determine the value of $\mathbf{a} \cdot (\mathbf{a} + 2\mathbf{b})$.

- A $\frac{2}{3}$
- $B \qquad \frac{4}{3}$
- $C \frac{7}{3}$
- D 3

17. $3x^2 + 12x + 17$ is expressed in the form $3(x + p)^2 + q$.

What is the value of q?

- A 1
- B 5
- C 17
- D -19

- 18. What is the value of $1 2\sin^2 15^\circ$?
 - A $\frac{1}{2}$
 - B $\frac{3}{4}$
 - C $\frac{\sqrt{3}}{2}$
 - D $\frac{7}{8}$
- 19. The diagram shows a regular hexagon PQRSTW.

 \overrightarrow{PW} and \overrightarrow{PQ} represent vectors \boldsymbol{u} and \boldsymbol{v} respectively.

- What is \overrightarrow{SW} in terms of u and v?
- A -u-2v
- B -u-v
- C u-v
- D u + 2v
- **20.** Evaluate $2 \log_5 \frac{1}{25}$.
 - A -3
 - B 0
 - $C \frac{3}{2}$
 - D 4

[END OF SECTION A]

6

0

ALL questions should be attempted.

- 21. A curve has equation $y = 3x^2 x^3$.
 - (a) Find the coordinates of the stationary points on this curve and determine their nature.
 - (b) State the coordinates of the points where the curve meets the coordinate axes and sketch the curve.
- 22. For the polynomial $6x^3 + 7x^2 + ax + b$,
 - x + 1 is a factor
 - 72 is the remainder when it is divided by x 2.
 - (a) Determine the values of a and b.
 - (b) Hence factorise the polynomial completely.
- 23. (a) Find P and Q, the points of intersection of the line y = 3x 5 and the circle C_1 with equation $x^2 + y^2 + 2x 4y 15 = 0$.
 - (b) T is the centre of C_1 . Show that PT and QT are perpendicular.
 - (c) A second circle C_2 passes through P, Q and T. Find the equation of C_2 .

$$y = ka^x$$
.

When $\log_9 y$ is plotted against x, a straight line passing through the points (0, 2) and (6, 5) is obtained, as shown in the diagram.

Find the values of k and a.

5

 $[END\ OF\ SECTION\ B]$

 $[END\ OF\ QUESTION\ PAPER]$

Higher Maths 2014 Paper 1

① Unti =
$$\frac{1}{3}$$
 Unti
U3 = $\frac{1}{3}$ x 15+1
= 6
Uu = $\frac{1}{3}$ x 6+1
= 3.

$$Mtargent = \frac{2}{3}$$

(3)
$$\log_4 12 - \log_4 x = \log_4 6$$

 $\log_4 \frac{12}{x} = \log_4 6$
 $\frac{12}{x} = 6$
 $x = 2$

(i)
$$3\sin x - 4\cos x = k\cos(x-x)$$

= $k\cos x\cos x \cos x + k\sin x \sin \alpha$.

$$RCOSd = -4$$
 $RSINd = 3$

(5)
$$\int (2x+9)^5 dx$$
= $\frac{(2x+9)^6}{6x2} + C$
= $\frac{1}{12}(2x+9)^6 + C$

(a)
$$\sin 2a = 2\sin a \cos a$$

 $= 2 \cdot \frac{3}{34} \cdot \frac{5}{34}$
 $= \frac{30}{34}$
 $= \frac{15}{12}$

(8)
$$y = (4 - 9x^{4})^{\frac{1}{2}}$$

 $dy = \frac{1}{2}(4 - 9x^{4})^{-\frac{1}{2}} - 36x^{3}$
 $= -18x^{3}(4 - 9x^{4})^{-\frac{1}{2}}$

(1)

B

(C)

(C)

9
$$5 \sin 2x + 5 \cdot 5 \cos 2x$$

= $5 \left(\sin 2x + \sqrt{3} \cos 2x \right)$
= $5 \left(2\cos \left(2x - \frac{\pi}{6} \right) \right)$
Max 10.

(ii)
$$u_{n+1} = (k-2)u_{n+1} = 5$$

(i)
$$y = 2f(x) + 1$$

 $(0,0) \rightarrow (0,1)$
 $(2,3) \rightarrow (2,7)$

(12)
$$\chi^2 + 6\chi - 16 \neq 0$$

 $(\chi + 108)(\chi - 2) \neq 0$
 $\chi \neq -8$, $\chi \neq 2$.

(ii)
$$U \cdot V = 0$$

$$\begin{pmatrix} k \\ k \end{pmatrix}, \begin{pmatrix} -6 \\ 2 \\ 5 \end{pmatrix} = 0$$

$$-6 + 2k + 5k = 0$$

$$7k = 6$$

$$k = 6$$

(15) roots
$$X = -1$$
 $X = 2$ $X = 2$

$$y = k(X+1)(X-2)^{2}$$
Point $(0, -8)$ $-8 = k(1)(-2)^{2}$

$$k = -2.$$

$$y = -2(x+1)(x-2)^{2}$$

(b)
$$a \cdot (a + 2b) = a \cdot a + 2a \cdot b$$

 $= |a|^2 + 2 \times \frac{2}{3}$
 $= 1 + \frac{4}{3}$
 $= \frac{7}{3}$

(i)
$$3x^{2} + 12x + 17$$

= $3(x^{2} + 1x) + 17$
= $3(x+2)^{2} - 2^{2} + 17$
= $3(x+2)^{2} - 12 + 17$
= $3(x+2)^{2} + 5$

(B)
$$1 - 2\sin^2 15$$

= $\cos 30$
= $\sqrt{3}$

(F)
$$SU = ST + TO + OW$$

= -y -y -y = -y - y - y

B

(C)

A

(I).

(2i) (0)
$$y = 3x^2 - x^3$$

 $\frac{dy}{dx} = 6x - 3x^2$
For stahmany points

points (0,0) (2,4)

(0,0) is a minimum TP (2,4) is a maximum TP.

(b)
$$ab \times axis$$
 $y=0$
 $3x^2-x^3=0$
 $x=0 \times x=3$ (0,0) (3,0)
 $ab = 0$ $ab = 0$ (0,0)

$$(22) \qquad 6x^3 + 7x^2 + ax + b$$

(a)
$$x+1$$
 factor -1 | 6 | 7 | ca | b | -6 | -1 | $-4+1$ | 6 | 1 | $a-1$ | $b-a+1$ | so $b-a+1=0$. (1)

division by
$$x-2$$
 2 | 6 7 a b | 12 38 2a+76 | 6 i9 a+38 b+24+76 | b+2a+4=0 ... ©

2 -0 gives
$$3a + 3 = 0$$

 $a = -1$
in 0 $b + 1 + 1 = 0$
 $b = -2$

So
$$a = -1$$
 and $b = -2$

Using first table.

$$6x^3 + 7x^2 - x - 2 = (x+1)(6x^2 + x - 2)$$

 $= (x+1)(3x+2)(2x-1)$

(23) (a)
$$x^2 + y^2 + 2x - 4y - 15 = 0$$
 ... (b) $y = 3x - 5$... (c)

Substitute (2) in (1).

$$x^2 + (3x-5)^2 + 2x - 4(3x-5) - 15 = 0$$
 $x^2 + 9x^2 - 30x + 25 + 2x - 12x + 20 - 15 = 0$
 $10x^2 - 40x + 30 = 0$
 $10x^2 - 40x + 3 = 0$
 $(x-3)(x-1) = 0$
 $x=3$ or $x=1$
 $y=4$
 $y=2$
 $P(1,-2)$ $Q(3,4)$

$$M_{PT} = \frac{-2-2}{1-(-1)}$$
= -2

$$M_{GT} = \frac{4-2}{3-(-1)}$$
 $= \frac{2}{4}$
 $= \frac{1}{2}$

$$m_{PT} \times m_{QT} = -2x \frac{1}{2}$$

$$= -1 \qquad \text{so PT and GT are perpendicular}$$

PQ is diameter
midpt =
$$(2,1)$$
 = centre

$$P6 = \sqrt{(3-1)^2 + (4-(-2)^2)^2}$$
= $\sqrt{40}$
= $2\sqrt{10}$

$$(x-2)^2 + (y-1)^2 = 10.$$

Shaight line.

$$M = \frac{5-2}{6-0}$$
 $= \frac{1}{2}$