X100/12/03

NATIONAL QUALIFICATIONS 2013 WEDNESDAY, 22 MAY 2.50 PM - 4.00 PM MATHEMATICS HIGHER Paper 2

Read carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

ALL questions should be attempted.

Marks

1. The first three terms of a sequence are 4, 7 and 16.

The sequence is generated by the recurrence relation

$$u_{n+1} = mu_n + c$$
, with $u_1 = 4$.

Find the values of m and c.

4

2. The diagram shows rectangle PQRS with P(7, 2) and Q(5, 6).

(a) Find the equation of QR.

3

(b) The line from P with the equation x + 3y = 13 intersects QR at T.

Find the coordinates of T.

3

(c) Given that T is the midpoint of QR, find the coordinates of R and S.

3

[Turn over

- 3. (a) Given that (x-1) is a factor of $x^3 + 3x^2 + x 5$, factorise this cubic fully.
- 4

(b) Show that the curve with equation

$$y = x^4 + 4x^3 + 2x^2 - 20x + 3$$

has only one stationary point.

Find the x-coordinate and determine the nature of this point.

5

4. The line with equation y = 2x + 3 is a tangent to the curve with equation $y = x^3 + 3x^2 + 2x + 3$ at A(0, 3), as shown in the diagram.

The line meets the curve again at B.

6

Show that B is the point (-3, -3) and find the area enclosed by the line and the curve.

5. Solve the equation

$$\log_5(3-2x) + \log_5(2+x) = 1$$
, where x is a real number.

Marks

6. Given that $\int_0^a 5\sin 3x \ dx = \frac{10}{3}$, $0 \le a < \pi$,

calculate the value of a.

5

7. A manufacturer is asked to design an open-ended shelter, as shown, subject to the following conditions.

Condition 1

The frame of a shelter is to be made of rods of two different lengths:

- x metres for top and bottom edges;
- y metres for each sloping edge.

Condition 2

The frame is to be covered by a rectangular sheet of material.

The total area of the sheet is 24 m².

(a) Show that the total length, L metres, of the rods used in a shelter is given by

$$L = 3x + \frac{48}{x}.$$

3

(b) These rods cost £8.25 per metre.

To minimise production costs, the total length of rods used for a frame should be as small as possible.

- (i) Find the value of x for which L is a minimum.
- (ii) Calculate the minimum cost of a frame.

7

8. Solve algebraically the equation

$$\sin 2x = 2\cos^2 x$$
 for $0 \le x < 2\pi$

6

[Turn over for Question 9 on Page six

9. The concentration of the pesticide, Xpesto, in soil can be modelled by the equation Marks

$$P_t = P_0 e^{-kt}$$

where:

- P_0 is the initial concentration;
- P_t is the concentration at time t;
- t is the time, in days, after the application of the pesticide.
- (a) Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.

If the half-life of Xpesto is 25 days, find the value of k to 2 significant figures.

4

3

(b) Eighty days after the initial application, what is the percentage decrease in concentration of Xpesto?

[END OF QUESTION PAPER]

Solvact

$$y = 4$$
 $y = 4$
 $x + 12 = 13$
 $x = 1$
 $x =$

=
$$4(x-1)(x^2+4x+5)$$

$$4(x-1)(x^2+4x+5)=0$$
 $x=1$

only one statuogy purnt.

Nature
$$x \rightarrow 1 \rightarrow 2$$

 $\frac{dy}{dx} = 4(x-1)(x+1x+5) -20 0 68$

so X=1 gives a minimum turning point.

4) Solve
$$y = x^3 + 3x^2 + 2x + 3$$
 ... (1) $y = 2x + 3$... (2)

Substitute (2) in (1)
$$x^3 + 3x^2 + 2x + 3 = 2x + 3$$
.

$$x^2(x^2+3)=0$$

$$X^2 = 0$$

$$X^{2} = 0$$
 $X + 3 = 0$ $X = -3$

$$A(0,3)$$
 $B(-3,-3)$

as regurred.

area =
$$\int_{-3}^{0} ((x^{3} + 3x^{2} + 2x + 3) - (2x + 3)) dx$$
=
$$\int_{-3}^{0} (x^{3} + 3x^{2}) dx$$

$$= \left(\frac{x^{4}}{u} + x^{3} \right)^{0}$$

$$= 0 - \left(\frac{-3}{4} \right)^{4} + \left(\frac{-3}{4} \right)^{3}$$

$$= - \left(\frac{81}{u} - 27 \right)$$

$$= 6 \frac{3}{4} \quad \text{Square unils}.$$

6
$$\int_{0}^{4} 5 \sin 3x \, dx = \frac{10}{3}$$

$$\left[-\frac{5}{3} \cos 3x \right]_{0}^{a} = \frac{10}{3}.$$

$$-\frac{5}{3} \cos 3a + \frac{5}{3} \cos 0 = \frac{10}{3}.$$

$$-\frac{5}{3} \cos 3a = \frac{5}{3}.$$

$$\cos 3a = -1$$

$$3a = TT,$$

$$a = TT$$

Area =
$$2xy$$

$$2u = 2xy$$

$$y = \frac{12}{x}$$

In (i)
$$\lambda = 3x + 4 \cdot \frac{12}{x}$$

$$\lambda = 3x + \frac{48}{x}$$
 as regulated.

(b)
$$\frac{dL}{dx} = 3 - \frac{118x^{-2}}{x^2}$$

For minimum
$$\frac{dL}{dx} = 0$$

 $3 - \frac{18}{x^2} = 0$
 $3x^2 = \frac{18}{x^2} = 16$
 $x = \frac{1}{x^2} = 16$

Nature

$$\frac{1}{1} = 3 - \frac{18}{1} = 3 - \frac{18}{1} = 3 - \frac{1}{1} = 3 - \frac{1$$

So x=4 gives a minimum length

$$\text{minimum cost} = 26 \times 8.25 \\
 = £198$$

8)
$$SI\dot{n} 2x = 2\cos^2 x$$

 $2\sin x \cos x = 2\cos^2 x$
 $2\sin x \cos x - 2\cos^2 x = 0$
 $2\cos x \left(\sin x - \cos x\right) = 0$
 $\cos x = 0$ $\sin x = \cos x$
 $x = \frac{\pi}{2}, \frac{3\pi}{2}$ $\tan x = 1$
 $x = \frac{\pi}{4}, \frac{5\pi}{4}$

Solutions $x = \pm 1, \pm 2, \pm 1, \pm 3$ $x = \pm 1, \pm 2, \pm 1, \pm 3$ Solutions

cassing cosx +0

$$P_{t} = P_{0}e^{-kt}$$

$$P_{t} = \frac{1}{2}P_{0} \qquad t = 25$$

$$\frac{1}{2}P_{0} = P_{0}e^{-25k}.$$

$$e^{-25k} = \frac{1}{2}$$

$$-25k = \ln \frac{1}{2}.$$

$$k = -\frac{1}{25}\ln \frac{1}{2}.$$

$$k = 0.028 \qquad (2s.f)$$

(b)
$$t = 80$$
 $k = 0.028$
 $P_t = P_0 e^{-kt}$
 $P_t = P_0 e^{-0.028 \times 80}$

$$p_{t} = 0.11 p_{0}$$
 (2st)

11/s left => 89/s decrease.