X100/12/02

NATIONAL 2013

WEDNESDAY, 22 MAY QUALIFICATIONS 1.00 PM - 2.30 PM

MATHEMATICS HIGHER Paper 1 (Non-calculator)

Read carefully

Calculators may NOT be used in this paper.

Section A – Questions 1–20 (40 marks)

Instructions for completion of Section A are given on Page two.

For this section of the examination you must use an HB pencil.

Section B (30 marks)

- Full credit will be given only where the solution contains appropriate working.
- Answers obtained by readings from scale drawings will not receive any credit. 2

SECTION A

ALL questions should be attempted.

1. The functions f and g are defined by $f(x) = x^2 + 1$ and g(x) = 3x - 4, on the set of real numbers.

Find g(f(x)).

- A $3x^2 1$
- B $9x^2 15$
- C $9x^2 + 17$
- D $3x^3 4x^2 + 3x 4$
- 2. The point P (5, 12) lies on the curve with equation $y = x^2 4x + 7$.

What is the gradient of the tangent to this curve at P?

- A 2
- B 6
- C 12
- D 13
- 3. Calculate the discriminant of the quadratic equation $2x^2 + 4x + 5 = 0$.
 - A -32
 - B -24
 - C 48
 - D 56

4. Which of the following shows the graph of $y = 4\cos 2x - 1$, for $0 \le x \le \pi$.

A

В

С

D

[Turn over

5. The line L passes through the point (-2, -1) and is parallel to the line with equation 5x + 3y - 6 = 0.

What is the equation of L?

- A 3x + 5y 11 = 0
- B 3x + 5y + 11 = 0
- C 5x + 3y 13 = 0
- D 5x + 3y + 13 = 0
- 6. What is the remainder when $x^3 + 3x^2 5x 6$ is divided by (x 2)?
 - A 0
 - B 3
 - C 4
 - D 8
- 7. Find $\int x(3x+2) dx$.
 - A $x^3 + c$
 - $B \quad x^3 + x^2 + c$
 - $C \qquad \frac{1}{2}x^2\left(\frac{3}{2}x^2 + 2x\right) + c$
 - $D \quad 3x^2 + 2x + c$

8. A sequence is defined by the recurrence relation $u_{n+1} = 0.1u_n + 8$, with $u_1 = 11$.

Here are two statements about this sequence:

- (1) $u_0 = 9.1$;
- (2) The sequence has a limit as $n \to \infty$.

Which of the following is true?

- A Neither statement is correct.
- B Only statement (1) is correct.
- C Only statement (2) is correct.
- D Both statements are correct.
- 9. The diagram shows a right-angled triangle with sides and angles as marked.

Find the value of $\sin 2x$.

- A $\frac{4}{5}$
- $B = \frac{2}{5}$
- C $\frac{2}{\sqrt{5}}$
- D $\frac{1}{\sqrt{5}}$
- 10. If 0 < a < 90, which of the following is equivalent to $\cos(270 a)^{\circ}$?
 - A $\cos a^{\circ}$
 - B $\sin a^{\circ}$
 - C -cos *a*°
 - D $-\sin a^{\circ}$

11. The diagram shows a cubic curve with equation y = f(x).

Which of the following diagrams could show the curve with equation y = -f(x - k), k > 0?

A

В

C

D

- 12. If f = 3i + 2k and g = 2i + 4j + 3k, find |f + g|.
 - A $\sqrt{14}$ units
 - B $\sqrt{42}$ units
 - C $\sqrt{66}$ units
 - D $\sqrt{70}$ units
- 13. A function f is defined on a suitable domain by $f(x) = \frac{x+2}{x^2 7x + 12}$.

What value(s) of x cannot be in this domain?

- A 3 and 4
- B -3 and -4
- C –2
- D 0
- 14. Given that $|\mathbf{a}| = 3$, $|\mathbf{b}| = 2$ and $\mathbf{a}.\mathbf{b} = 5$, what is the value of $\mathbf{a}.(\mathbf{a} + \mathbf{b})$?
 - A 11
 - B 14
 - C 15
 - D 21
- 15. Solve $\tan\left(\frac{x}{2}\right) = -1$ for $0 \le x < 2\pi$.
 - A $\frac{\pi}{2}$
 - $B \qquad \frac{7\pi}{8}$
 - $C \frac{3\pi}{2}$
 - $D = \frac{15\pi}{8}$

- **16.** Find $\int (1-6x)^{-\frac{1}{2}} dx$ where $x < \frac{1}{6}$.
 - A $\frac{1}{9}(1-6x)^{-\frac{3}{2}}+c$
 - B $= 3(1-6x)^{-\frac{3}{2}} + c$
 - C $-\frac{1}{3}(1-6x)^{\frac{1}{2}}+c$
 - D $-3(1-6x)^{\frac{1}{2}}+c$
- 17. The diagram shows a curve with equation of the form $y = kx(x + a)^2$, which passes through the points (-2, 0), (0, 0) and (1, 3).

What are the values of a and k?

- $\begin{array}{c|cccc}
 & a & k \\
 \hline
 & -2 & \frac{1}{3}
 \end{array}$
- В –2 3
- C 2 $\frac{1}{3}$
- $D \quad 2 \quad | \quad 3$

- 18. Given that $y = \sin(x^2 3)$, find $\frac{dy}{dx}$.
 - A $\sin 2x$
 - B $\cos 2x$
 - C $2x \sin(x^2-3)$
 - $D 2x \cos(x^2 3)$
- 19. Solve $1 2x 3x^2 > 0$, where x is a real number.
 - A $x < -1 \text{ or } x > \frac{1}{3}$
 - B $-1 < x < \frac{1}{3}$
 - $C \qquad x < -\frac{1}{3} \text{ or } x > 1$
 - $D \frac{1}{3} < x < 1$
- 20. The graph of $\log_3 y$ plotted against x is a line through the origin with gradient 2, as shown.

- Express y in terms of x.
- $A \qquad y = 2x$
- B y = 9x
- C $y = 6^x$
- $D y = 9^x$

5

ALL questions should be attempted.

Express $2x^2 + 12x + 1$ in the form $a(x + b)^2 + c$. 3 21. A circle C_1 has equation $x^2 + y^2 + 2x + 4y - 27 = 0$. 2 (a) Write down the centre and calculate the radius of C_1 . (b) The point P(3, 2) lies on the circle C_1 . 3 Find the equation of the tangent at P. (c) A second circle C_2 has centre (10, -1). The radius of C_2 is half of the radius of C_1 . Show that the equation of C_2 is $x^2 + y^2 - 20x + 2y + 93 = 0$. 2 (d) Show that the tangent found in part (b) is also a tangent to circle C_2 . 23. (a) The expression $\sqrt{3}\sin x^{\circ} - \cos x^{\circ}$ can be written in the form $k \sin(x - a)^{\circ}$, where k > 0 and $0 \le a < 360$. 4 Calculate the values of *k* and *a*. (b) Determine the maximum value of $4+5\cos x^{\circ}-5\sqrt{3}\sin x^{\circ}$, where 2 $0 \le x < 360$. (i) Show that the points A(-7, -8, 1), T(3, 2, 5) and B(18, 17, 11) are **24.** (a) collinear. 4 (ii) Find the ratio in which T divides AB.

[END OF SECTION B]

If TB and TC are perpendicular, find the co-ordinates of C.

[END OF QUESTION PAPER]

(b) The point C lies on the x-axis.

(Higher Maths Paper 1 2013

(1)
$$g(f(x))$$

= $g(x^2+1)$
= $3(x^2+1)-4$
= $3x^2-1$

When
$$x=5$$
 $dy=10-4$

(3)
$$2x^2 + 4x + 5 = 0$$

discriminant b2-4ac

$$= 4^{2} - 4 \times 2 \times 5$$

(5)
$$5x + 3y - 6 = 0$$

 $3y = -5x + 6$
 $y = -5x + 2$

$$\dot{m} = -\frac{5}{3}$$

$$\cos (270 - a)$$
= $-\cos (90 - a)$
= $-\sin a$

y = -f(x - k)Then reflected in x-axis

(1)
$$f+g = 3i + 2k + 2i + 4j + 3k$$

= $5i + 4j + 5k$

$$|F+g| = \sqrt{25+16+25}$$

= $\sqrt{66}$.

(C)

(B)
$$X^2 - 7x + 12 \neq 0$$

 $(x - 4)(x - 3) \neq 0$
 $x \neq 4 \text{ cr } x \neq 3$.

$$\begin{array}{c} (a) & a \cdot (a + b) \\ = a \cdot (a + b) \\ = a \cdot b \\ = a$$

(B)

$$\frac{15}{2} \quad \tan \frac{x}{2} = -1$$

$$\frac{X}{Z} = \frac{3\pi}{4}, \frac{3\pi}{4}$$

Square and add
$$k^2 = 3+1$$

 $k = 2$

Divide tan
$$a = -1$$
 $\sqrt{30^\circ}$

$$\sqrt{3} \sin x - \cos x = 2 \left(\sin \left(x - 330 \right) \right)$$

(b)
$$\max = 4 + 5 \cos x - 5 \cdot 3 \sin x$$

= $4 + 5 (\cos x - 3 \sin x)$
= $4 - 5 (3 \sin x - \cos x)$
= $4 - 10 (\sin (x - 330))$

max 14.

So
$$3\overline{A}^{\circ} = 2\overline{B}$$

so AT and TB are parallel and since T is a common pant they must be collinear

$$\frac{AT}{TR} = \frac{2}{3}$$

raho 2:3,

$$\overrightarrow{TB} = \begin{pmatrix} 15 \\ 15 \\ G \end{pmatrix}$$

$$\overrightarrow{TC} = C - \underline{C}$$

$$= \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & -3 \\ -2 & -5 \end{pmatrix}$$

$$\begin{pmatrix} 15 \\ 15 \\ 6 \end{pmatrix}, \begin{pmatrix} x-3 \\ -2 \\ -5 \end{pmatrix} = 0$$