X100/302

NATIONAL 2011

WEDNESDAY, 18 MAY QUALIFICATIONS 10.50 AM = 12.00 NOON MATHEMATICS HIGHER Paper 2

Read Carefully

- Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

1. D,OABC is a square based pyramid as shown in the diagram below.

O is the origin, D is the point (2, 2, 6) and OA = 4 units. M is the mid-point of OA.

(a) State the coordinates of B.

1

(b) Express DB and DM in component form.

3

(c) Find the size of angle BDM.

5

2. Functions f, g and h are defined on the set of real numbers by

•
$$f(x) = x^3 - 1$$

•
$$g(x) = 3x + 1$$

•
$$h(x) = 4x - 5.$$

(a) Find g(f(x)).

2

(b) Show that $g(f(x)) + xh(x) = 3x^3 + 4x^2 - 5x - 2$.

1

- (c) (i) Show that (x-1) is a factor of $3x^3 + 4x^2 5x 2$.
 - (ii) Factorise $3x^3 + 4x^2 5x 2$ fully.

5

(d) Hence solve g(f(x)) + xh(x) = 0.

1

[Turn over

Marks

3. (a) A sequence is defined by $u_{n+1} = -\frac{1}{2}u_n$ with $u_0 = -16$. Write down the values of u_1 and u_2 .

1

(b) A second sequence is given by 4, 5, 7, 11,

It is generated by the recurrence relation $v_{n+1} = pv_n + q$ with $v_1 = 4$.

Find the values of p and q.

3

- (c) Either the sequence in (a) or the sequence in (b) has a limit.
 - (i) Calculate this limit.
 - (ii) Why does the other sequence not have a limit?

3

4. The diagram shows the curve with equation $y = x^3 - x^2 - 4x + 4$ and the line with equation y = 2x + 4.

The curve and the line intersect at the points (-2, 0), (0, 4) and (3, 10).

Calculate the total shaded area.

10

5. Variables x and y are related by the equation $y = kx^n$.

The graph of $\log_2 y$ against $\log_2 x$ is a straight line through the points (0, 5) and (4, 7), as shown in the diagram.

Find the values of k and n.

6. (a) The expression $3\sin x - 5\cos x$ can be written in the form $R\sin(x+a)$ where R > 0 and $0 \le a < 2\pi$.

Calculate the values of R and a.

4

(b) Hence find the value of t, where $0 \le t \le 2$, for which

$$\int_0^t (3\cos x + 5\sin x) \ dx = 3.$$

7

7. Circle C_1 has equation $(x+1)^2 + (y-1)^2 = 121$.

A circle C_2 with equation $x^2 + y^2 - 4x + 6y + p = 0$ is drawn inside C_1 .

The circles have no points of contact.

What is the range of values of p?

9

 $[END\ OF\ QUESTION\ PAPER]$

Higher Maths Paper 2 2011

$$\begin{array}{ccc}
(b) & \overrightarrow{DB} &= b - d \\
&= \begin{pmatrix} 4 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ 6 \end{pmatrix} \\
&= \begin{pmatrix} 2 \\ 2 \\ -6 \end{pmatrix}$$

$$\widetilde{DM} = M - d$$

$$- \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 7 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ -2 \\ -6 \end{pmatrix}$$

$$\begin{array}{ccc} \mathbf{CO} & \overline{\mathbf{DB}} \cdot \overline{\mathbf{DM}} &= \begin{pmatrix} 2 \\ 2 \\ -6 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ -6 \end{pmatrix} \end{array}$$

$$= -4+36$$

(2) (a)
$$g(f(x)) = g(x^3 - 1)$$

= $3(x^3 - 1) + 1$
= $3x^3 - 2$.

(b)
$$g(f(x)) + x(h(x))$$

 $= 3x^3 - 2 + x(h(x) - 5)$
 $= 3x^3 - 2 + hx^2 - 5x$
 $= 3x^3 + hx^2 - 5x - 2$ (S)
(c) (1) 1 3 4 -5 3 7 42
(ii) $(x-1)(3x^2 + 7x + 2)$
 $(x-1)(3x+1)(x+2)$

$$\frac{3}{(x-1)} \frac{7}{(3x^2+7x+2)} + \frac{12}{(3x^2+7x+2)} = 0$$
temainder = 0
so $(x-1)$ is a factor.

as regurred.

-2

(d)
$$g(f(x)) + x(h(x)) = 0$$

 $3x^3 + 4x^2 - 5x - 2 = 0$
 $(x-1)(3x+1)(x+2) = 0$
 $x=1, x=-\frac{1}{3}, x=-2$

(3) (a)
$$U_{1}H = -\frac{1}{2}U_{1}$$
 $U_{2} = -\frac{1}{2}U_{1}$

$$U_{1} = -\frac{1}{2}U_{0}$$

$$U_{2} = -\frac{1}{2}U_{1}$$

$$U_{3} = -\frac{1}{2}U_{1}$$

$$U_{4} = -\frac{1}{2}U_{1}$$

$$U_{5} = -\frac{1}{2}U_{1}$$

$$U_{7} = -\frac{1}{2}U_{1}$$

(b) WARRY
$$V_1 = 4$$

 $V_2 = pV_1 + 2 \Rightarrow 5 = 4p+9$
 $V_3 = pV_2 + 9 \Rightarrow 7 = 5p+9$

Subtract
$$2 = p$$

$$= 7 \quad g = -3$$

(a) For limit $-1 < q < 1$

$$= 1 - q$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$p = 2, q = 3$$

so seguence in (a) has a limit

No limit since -1 < a < 1 Per limit to exist and

(a) Lith area =
$$\int_{-2}^{0} (x^{3}-x^{2}-tx+t_{1}) - (2x+t_{1}) dx$$

$$= \int_{-2}^{0} (x^{3}-x^{2}-6x) dx$$

$$= \left[\frac{x^{4}-x^{3}}{4} - 3x^{2} \right]_{0}^{0}$$

$$= 0 - \left(\frac{16 + 8 - 12}{4}\right)$$

$$= \frac{16}{3}$$

RH area =
$$\int_{0}^{3} (2x-4) - (x^3-x^2-4x+4) cx$$

$$= \left(-\frac{\chi_4}{4} + \frac{\chi_3}{3} + 3\chi^2 \right)^3$$

$$= \left(-\frac{81}{4} + \frac{27}{3} + 27 \right) - 0$$

total area =
$$\frac{16}{3} + \frac{63}{4}$$
= $\frac{253}{12}$ Square units

$$M = \frac{7-5}{4-0} = \frac{1}{2}$$

Here.
$$\log_2 y = \frac{1}{2} \log_2 x + 5$$

$$\log_2 y - \log_2 x^{\frac{1}{2}} = 5$$

$$\log_2 y = 5$$

$$k = 25 \quad n = \frac{1}{2}$$

6 (c)
$$3\sin x - 5\cos x = R\sin(x+a)$$

= $R\sin x\cos x + R\cos x\sin a$

(a)
$$(x+1)^2 + (y-1)^2 = 121$$
(c) $(x+1)^2 + (y-1)^2 = 121$
(c) $(x+1)^2 + (y-1)^2 = 0$
(e) $(x+1)^2 + (y-1)^2 = 0$
(for each $(x+1)^2 + (y-1)^2 = 0$
(e) $(x+1)^2 + (y-1)^2 = 0$
(for each $(x+1)^2 + (y-1)^2 = 0$
(for each