X100/301

NATIONAL QUALIFICATIONS 2010

FRIDAY, 21 MAY 9.00 AM - 10.30 AM MATHEMATICS
HIGHER
Paper 1
(Non-calculator)

Read carefully

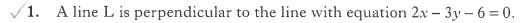
Calculators may NOT be used in this paper.

Section A – Questions 1–20 (40 marks)

Instructions for completion of Section A are given on page two.

For this section of the examination you must use an HB pencil.

Section B (30 marks)


- 1 Full credit will be given only where the solution contains appropriate working.
- 2 Answers obtained by readings from scale drawings will not receive any credit.

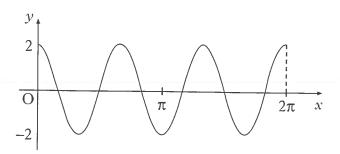
SECTION A

ALL questions should be attempted.

What is the gradient of the line L?

- $C \qquad \frac{2}{3}$
- D

A sequence is defined by the recurrence relation $u_{n+1} = 2u_n + 3$ and $u_0 = 1$. What is the value of u_2 ?


- 7 A
- В 10
- C 13
- D 16

3. Given that $\mathbf{u} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$, find $3\mathbf{u} - 2\mathbf{v}$ in component form.

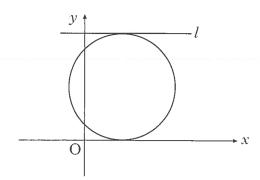
A $\begin{pmatrix} 4 \\ -1 \\ -5 \end{pmatrix}$

- $C \quad \begin{pmatrix} 8 \\ -1 \\ 5 \end{pmatrix}$

4. The diagram shows the graph with equation of the form $y = a\cos bx$ for $0 \le x \le 2\pi$.

What is the equation of this graph?

- A $y = 2\cos 3x$
- B $y = 2\cos 2x$
- C $y = 3\cos 2x$
- D $y = 4\cos 3x$
- 5. When $x^2 + 8x + 3$ is written in the form $(x + p)^2 + q$, what is the value of q?
 - A -19
 - B -13
 - C -5
 - D 19


[Turn over

6. The roots of the equation $kx^2 - 3x + 2 = 0$ are equal.

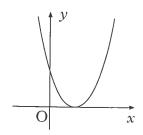
What is the value of k?

- A $-\frac{9}{8}$
- B $-\frac{8}{9}$
- $C = \frac{8}{9}$
- D $\frac{9}{8}$
- 7. A sequence is generated by the recurrence relation $u_{n+1} = \frac{1}{4}u_n + 7$, with $u_0 = -2$. What is the limit of this sequence as $n \to \infty$?
 - A $\frac{1}{28}$
 - $B = \frac{28}{5}$
 - $C = \frac{28}{3}$
 - D 28

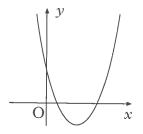
8. The equation of the circle shown in the diagram is $x^2 + y^2 - 6x - 10y + 9 = 0$. The x-axis and the line l are parallel tangents to the circle.

What is the equation of line *l*?

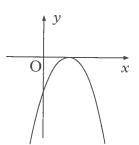
- A y = 5
- B y = 10
- C y = 18
- D y = 20
- 9. Find $\int (2x^{-4} + \cos 5x) dx$.
 - $A \quad -\frac{2}{5}x^{-5} 5\sin 5x + c$
 - B $-\frac{2}{5}x^{-5} + \frac{1}{5}\sin 5x + c$
 - $C -\frac{2}{3}x^{-3} + \frac{1}{5}\sin 5x + c$
 - $D = -\frac{2}{3}x^{-3} 5\sin 5x + c$
- 10. The vectors $x\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$ and $-3\mathbf{i} + 2\mathbf{j} \mathbf{k}$ are perpendicular.

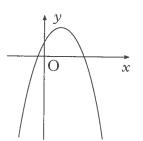

What is the value of x?

- A 0
- B 1
- $C = \frac{4}{3}$
- D $\frac{10}{3}$

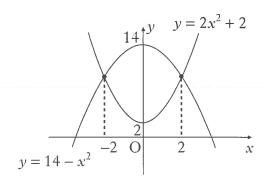

- 11. Functions f and g are defined on suitable domains by $f(x) = \cos x$ and $g(x) = x + \frac{\pi}{6}$. What is the value of $f\left(g\left(\frac{\pi}{6}\right)\right)$?
 - $A \qquad \frac{1}{2} + \frac{\pi}{6}$
 - $B \qquad \frac{\sqrt{3}}{2} + \frac{\pi}{6}$
 - $C \qquad \frac{\sqrt{3}}{2}$
 - $D \qquad \frac{1}{2}$
- **12.** If $f(x) = \frac{1}{\sqrt[5]{x}}$, $x \neq 0$, what is f'(x)?
 - A $-\frac{1}{5}x^{-\frac{6}{5}}$
 - B $-\frac{1}{5}x^{-\frac{4}{5}}$
 - C $-\frac{5}{2}x^{-\frac{7}{2}}$
 - D $-\frac{5}{2}x^{-\frac{3}{2}}$

- 13. Which of the following diagrams shows a parabola with equation $y = ax^2 + bx + c$, where
 - *a* > 0
 - $b^2 4ac > 0$?


A


В

C



D

[Turn over

14. The diagram shows graphs with equations $y = 14 - x^2$ and $y = 2x^2 + 2$.

Which of the following represents the shaded area?

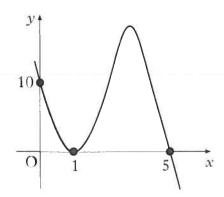
A
$$\int_{2}^{14} (12-3x^2) dx$$

$$B \int_{2}^{14} (3x^2 - 12) \, dx$$

C
$$\int_{-2}^{2} (12 - 3x^2) dx$$

$$D \int_{-2}^{2} (3x^2 - 12) \, dx$$

15. The derivative of a function f is given by $f'(x) = x^2 - 9$.

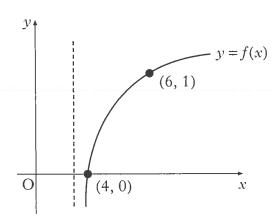

Here are two statements about f:

- (1) f is increasing at x = 1;
- (2) f is stationary at x = -3.

Which of the following is true?

- A Neither statement is correct.
- B Only statement (1) is correct.
- C Only statement (2) is correct.
- D Both statements are correct.

16. The diagram shows the graph with equation $y = k(x-1)^2(x+t)$.


What are the values of k and t?

	k	t
A	-2	-5
В	-2	5
C	2	-5
D	2	5
		1

- 17. If $s(t) = t^2 5t + 8$, what is the rate of change of s with respect to t when t = 3?
 - A -5
 - B 1
 - C 2
 - D 9
 - **18.** What is the solution of $x^2 + 4x > 0$, where x is a real number?
 - A -4 < x < 0
 - B x < -4, x > 0
 - C 0 < x < 4
 - D x < 0, x > 4

[Turn over

19. The diagram shows the graph of y = f(x) where f is a logarithmic function.

What is f(x)?


$$A \quad f(x) = \log_6(x - 3)$$

$$B \quad f(x) = \log_3(x+3)$$

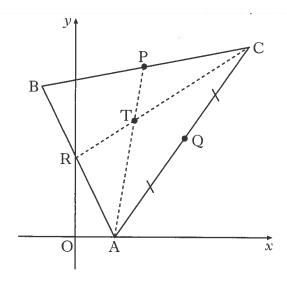
$$C f(x) = \log_3(x - 3)$$

$$D \quad f(x) = \log_6(x+3)$$

20. The diagram shows the graph of y = f(2x) - 3.

What are the coordinates of the turning point on the graph of y = f(x)?

- A (12, 7)
- B (12, 1)
- C (3,7)
- D (3, 1)


 $[END\ OF\ SECTION\ A]$

SECTION B

ALL questions should be attempted.

21. Triangle ABC has vertices A(4, 0), B(-4, 16) and C(18, 20), as shown in the diagram opposite.

Medians AP and CR intersect at the point T(6, 12).

(a) Find the equation of median BQ.

(b) Verify that T lies on BQ.

1

3

(c) Find the ratio in which T divides BQ.

2

- **22.** (a) (i) Show that (x-1) is a factor of $f(x) = 2x^3 + x^2 8x + 5$.
 - (ii) Hence factorise f(x) fully.

5

(b) Solve $2x^3 + x^2 - 8x + 5 = 0$.

1

(c) The line with equation y = 2x-3 is a tangent to the curve with equation $y = 2x^3 + x^2 - 6x + 2$ at the point G.

Find the coordinates of G.

5

(d) This tangent meets the curve again at the point H.

Write down the coordinates of H.

1

[Turn over for Question 23 on Page fourteen

- 23. (a) Diagram 1 shows a right angled triangle, where the line OA has equation 3x - 2y = 0.
 - (i) Show that $\tan a = \frac{3}{2}$.
 - (ii) Find the value of sina.

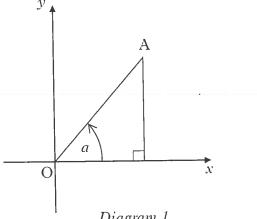
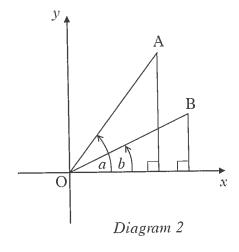



Diagram 1

(b) A second right angled triangle is added as shown in Diagram 2.

> The line OB has equation 3x - 4y = 0. Find the values of $\sin b$ and $\cos b$.

- (c) (i) Find the value of sin(a-b).
 - (ii) State the value of $\sin(b-a)$.

 $[END\ OF\ SECTION\ B]$

[END OF QUESTION PAPER]

Higher Paper 1 2010.

①
$$2x-3y-6=0$$

 $3y=2x-6$
 $y=\frac{2}{3}x-2$.

(2)
$$U_{1}+1 = 2U_{1}+3$$
 $U_{6}=1$
 $U_{1}=2x1+3$
 $=5$
 $U_{L}=2x5+3$
 $=13$

$$3u - 2y$$

$$= \begin{pmatrix} 6 \\ 0 \\ 3 \end{pmatrix} - \begin{pmatrix} -2 \\ 4 \\ 8 \end{pmatrix}$$

$$= \begin{pmatrix} 8 \\ -4 \\ -5 \end{pmatrix}$$

(5)
$$X^{2} + 8x + 3$$

= $(x + 4)^{2} - 4^{2} + 3$
= $(x + 4)^{2} - 13$.

(ii) atea =
$$\int_{-2}^{2} (14-x^2) - (2x^2+2) dx$$

= $\int_{-2}^{2} (12-3x^2) dx$ ©

(15)
$$X=1$$
 $f'(1) = -8$
 $X=-3$ $f'(-3) = 0$

decreasing. (i) X stationary

(16)
$$t = -5$$

Point (0, 10)

$$y = k(x-1)^2(x-5)$$

 $10 = k \times 1 \times (-5)$
 $k = -2$.

(i)
$$s(t) = t^2 - 5t + 8$$

 $s'(t) = 2t - 5$
 $s'(3) = 6 - 5$
 $= 1$

1x<-4 and x>0.

(9)
$$(4,0) \rightarrow \text{shift 3 along.}$$
so $(6,1)$ would have been $(3,1)$
base.

 $y = \log_3(x-3)$

$$y = f(2x) - 3$$

$$x \text{ co-cod } y \text{ co-cod } -3.$$
Reverse so $(6, 4)$

$$-7 (12, 7)$$

(21) (a)
$$\Theta = \left(\frac{4+18}{2}, \frac{0+20}{2}\right)$$

$$= \left(11, 10\right)$$

$$M_{BQ} = \frac{16-10}{-4-11}$$

$$= -\frac{6}{15}$$

$$= -\frac{2}{5}$$

$$y-b=m(x-a)$$

 $y-16=-\frac{2}{5}(x+4)$

$$5y - 80 = -2x - 8$$

 $5y + 2x = 72$.

(b) T (6,12)
$$5x12+2x6$$

 x^2 y^2 = 60+12
= 72.

(c)
$$\overrightarrow{B}\overrightarrow{f} = \underline{t} - \underline{b}$$

$$= \begin{pmatrix} 6 \\ 12 \end{pmatrix} - \begin{pmatrix} -4 \\ 16 \end{pmatrix}$$

$$= \begin{pmatrix} 10 \\ -4 \end{pmatrix}$$

$$= 2\begin{pmatrix} 5 \\ -2 \end{pmatrix}$$

raho 2:1,

so T lies on 86.

remainder 0 so (x-1) is a fader

(ii)
$$f(x) = (x-1)(2x^2+3x-5)$$

= $(x-1)(2x+5)(x-1)$

(b)
$$2x^3 + x^2 - 8x + 5 = 0$$

=> $(x-1)(2x+5)(x-1) = 0$
 $x=1$ or $x=-\frac{5}{2}$.

C1 Solve simultaneously
$$2x^3 + x^2 - 6x + 2 = 2x - 3$$

$$2x^3 + x^2 - 8x + 5 = 0$$

$$(x-1)^2 (2x+5) = 0$$

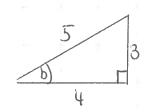
$$x=1$$
repeated noot so tangent at $x=1$.

When x=1 y=-1 G(1,-1)

(a)
$$H = \left(-\frac{5}{2}, -8\right)$$

(3) (1)
$$3x - 2y \cdot 0$$

 $2y = 3x$
 $y = \frac{3}{2}x$


$$m = \frac{3}{2}$$

$$M = tana$$

so $tana = \frac{3}{2}$.

(b)
$$3x - 4y = 0$$

 $4y = 3x$
 $y = \frac{3}{4}x$

$$m = tonio$$
.

 $tonio = 3$

$$SINb = \frac{3}{5} \quad and \quad Cosb = \frac{4}{5}$$

$$=\frac{3}{\sqrt{13}}, \frac{4}{\sqrt{13}}, -\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{5}}$$

$$= \frac{6JB}{65}$$

(11)
$$\sin(b-a) = \sin[-(a-b)]$$

= $-\sin(a-b)$

$$= -\frac{6\sqrt{3}}{65}$$