The Circle Past Papers Unit 2 outcome 4

Multiple Choice Questions

Each correct answer in this section is worth two marks.

1. A circle has equation $(x-3)^2 + (y+4)^2 = 20$.

Find the gradient of the tangent to the circle at the point (1,0).

- A. -2
- B. $-\frac{1}{2}$
- C. $\frac{1}{2}$
- D. 2

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
С	2.4	С	0.43	0.77	NC	G9, G2, G5	HSN 097

The centre is (3,-4).

$$m_{\text{radius}} = \frac{0 - (-4)}{1 - 3} = \frac{4}{-2} = -2.$$

So $m_{tot} = \frac{1}{2}$ since the radius and tangent are perpendicular.

Option C

[END OF MULTIPLE CHOICE QUESTIONS]

Written Questions

[SQA] 2. Find the equation of the tangent at the point (3,4) on the circle $x^2 + y^2 + 2x - 4y - 15 = 0$.

		Unit	no	n-calc	Ca	alc	cal	c neut	Conte	nt Reference :	1.1
part	marks	Unit	С	A/B	C	A/B	C	A/B	Main	Additional	
	4	1.1					4		1.1.1	1.1.9, 2.4.2	Source
Ľ							-			,	1996 P1 qu.4

- \bullet^1 centre = (-1,2)
- $n_{radius} = \frac{1}{2}$
- $m_{tgt} = -2$
- y-4=-2(x-3)

4

3

4

3. Find the equation of the tangent at the point (3,1) on the circle [SQA] $x^2 + y^2 - 4x + 6y - 4 = 0$.

		Unit	no	n-calc	Ca	ılc	cal	neut	Conte	nt Reference :	2.4
part	marks	Onit	С	A/B	С	A/B	C	A/B	Main	Additional	
											Source
·	5	2.4					5		2.4.4		1991 P1 qu.8
						-					

- strat:use centre and tgt L radius
- centre = (2, -3)

- $y-1=-\frac{1}{4}(x-3)$
- 4. Find the equation of the circle which has P(-2, -1) and Q(4, 5) as the end points [SQA] of a diameter.

		Y Tonia	no	n-calc	Ca	ılc	cal	c neut	Content Reference :	2.4
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	
	3	2.4					3		2.4.3	Source
1	3	2.7							4.10	1995 PI qu.9

- •¹ (1,2) •² $\sqrt{(4-1)^2 + (5-2)^2}$ or equiv. •³ $(x-1)^2 + (y-2)^2 = 18$ or equiv.
- 5. The point P(2,3) lies on the circle $(x+1)^2 + (y-1)^2 = 13$. Find the equation of [SQA] the tangent at P.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
_	4	С	CN	G11	2y + 3x = 12	2002 P1 Q1

- •¹ ic: interpret centre from equ. of
- \bullet^2 ss: know to find gradient of radius
- •3 ss: know to find perp. gradient
- 4 ic: state equation of tangent

- C = (-1, 1)• $m_{\text{rad}} = \frac{2}{3}$ $m_{\text{tgt}} = -\frac{3}{2}$ $y 3 = -\frac{3}{2}(x 2)$

5

5

U2 OC4

[SQA] 6. The line y = -1 is a tangent to a circle which passes through (0,0) and (6,0). Find the equation of this circle.

nari	marks	Unit	no	n-calc	ca	ılc	cal	c neut	Conte	nt Refe	rence :	2.4
Pars	Hulks	Olut	C	A/B	С	A/B	C	A/B	Main	Additi	onal	
	6	2.4					1	5	2.4,3	0.1		Source 1996 P1 qu.20
.1 .2 .3 .4 .5	Centre C $CO^2 = CI$ $y = 4$ $radius = 5$	p ²		(3,-1)	OR	• ³ (a	$(x-3)^2 + (x-3)^2 + (x-3$	$(y-k)^2 = r^2$ $-1-k_1^{-2} \approx r^2$ $-x^2 - 6x + (2x^2 + 4x^2 $	has '=' roo k+1)	OR		g = ~3 ⇒ f = ~4

[SQA] 7. Find the possible values of k for which the line x - y = k is a tangent to the circle $x^2 + y^2 = 18$.

Part marks Offic C A/B C A/B C A/B Main Additional Source			Unit	no	n-calc	Ca	alc	cal	c neut	Conte	ent Reference:	2.4
. 5 2.4 2 3 2.4.4 1989 P1 a	part	marks	Unit	C	A/B	С	A/B	С	A/B	Main	Additional	
1989 P1 c		_	2.4				'			2.4		Source
	•	5	2.4					^	J	2.4.4		1989 P1 qu.1
10. D	$e^2 2x^2 - 2kx + k^2$				-							
												
$*^3$ strat: " $b^2 - 4ac$ " = 0		•4 (-	$-2k)^2-4.2$	(k^2-1)	8)							
<u> </u>		\bullet^5 k	= ±6									

[SQA] 8. For what range of values of k does the equation $x^2 + y^2 + 4kx - 2ky - k - 2 = 0$ represent a circle?

Content

	5	A	NC	G9, A17	for all k	2000 P1 Q6
• ² • ³ • ⁴	ss: kno pd: pro pd: pro ic: inte ic: inte	cess cess erpret qu	ıadratic	adius inequation inequation		ed by •²

Answer

Marks

Level | Calc.

3

9. Explain why the equation $x^2 + y^2 + 2x + 3y + 5 = 0$ does **not** represent a circle. [SQA]

		T 7	no	n-calc	ca	ılc	cal	c neut	Conte	nt Reference :	2.4
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main	Additional	
											Source
	2	2.4					2		2.4.2		1993 P1 qu.18

- $g^2 + f^2 c = -1\frac{3}{4}$ $r = \sqrt{-1\frac{3}{4}}$ which is not possible
- 10. For what range of values of c does the equation $x^2 + y^2 6x + 4y + c = 0$ represent [SQA] a circle?

		T looks	no	n-calc	Ca	ılc	cal	c neut	Content Reference:	2.4
part	marks	Unit	C	A/B	С	A/B	C	A/B	Main Additional	4.7
	3	2.4					2	1	2.4.2	Source
Ĭ								}	0.52	1997 P1 qu.14

3

- [SQA] 11. Circle P has equation $x^2 + y^2 8x 10y + 9 = 0$. Circle Q has centre (-2, -1) and radius $2\sqrt{2}$.
 - (a) (i) Show that the radius of circle P is $4\sqrt{2}$.
 - (ii) Hence show that circles P and Q touch.

(b) Find the equation of the tangent to the circle Q at the point (-4,1).

(c) The tangent in (b) intersects circle P in two points. Find the *x*-coordinates of the points of intersection, expressing you answers in the form $a \pm b\sqrt{3}$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
(a)	2	С	CN	G9	proof	2001 P1 Q11
(a)	2	A/B	CN	G14		
(b)	3	С	CN	G11	y = x + 5	
(c)	3	С	CN	G12	$x = 2 \pm 2\sqrt{3}$	

- •¹ ic: interpret centre of circle (P)
- •² ss: find radius of circle (P)
- •³ ss: find sum of radii
- ⁴ pd: compare with distance between centres
- ss: find gradient of radius
- •6 ss: use $m_1 m_2 = -1$
- 7 ic: state equation of tangent
- •8 ss: substitute linear into circle
- 9 pd: express in standard form
- •10 pd: solve (quadratic) equation

- 1 $C_{P} = (4,5)$
- \bullet^2 $r_P = \sqrt{16 + 25 9} = \sqrt{32} = 4\sqrt{2}$
- $^3 r_P + r_Q = 4\sqrt{2} + 2\sqrt{2} = 6\sqrt{2}$
- 4 $C_{P}C_{Q} = \sqrt{6^{2} + 6^{2}} = 6\sqrt{2}$ and "so touch"
- 5 $m_{\rm r} = -1$
- 6 $m_{\text{tgt}} = +1$
- $\bullet^7 y 1 = 1(x+4)$
- $\bullet^8 x^2 + (x+5)^2 8x 10(x+5) + 9 = 0$
- $\bullet^9 2x^2 8x 16 = 0$
- $\bullet^{10} x = 2 \pm 2\sqrt{3}$

2

12. (a) Find the equation of AB, the [SQA] perpendicular bisector of the line joing the points P(-3,1)Q(1,9).

(c) The tangents at P and Q intersect at

Write down

- (i) the equation of the tangent at Q
- (ii) the coordinates of T.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
(a)	4	C	CN	G7	x + 2y = 9	2000 P2 Q2
(b)	3	С	CN	G10	$(x-1)^2 + (y-4)^2 = 25$	
(c)	2	С	CN	G11, G8	(i) $y = 9$, (ii) $T(-9, 9)$	

- •¹ ss: know to use midpoint
- 2 pd: process gradient of PQ
- ss: know how to find perp. gradient
- 4 ic: state equ. of line
- •5 ic: interpret "parallel to y-axis"
- pd: process radius
- •⁷ ic: state equ. of circle
- •8 ic: interpret diagram
- ss: know to use equ. of AB

- \bullet^1 midpoint = (-1,5)
- \bullet^2 $m_{PQ} = \frac{9-1}{1-(-1)}$
- $m_{\perp} = -\frac{1}{2}$ $y 5 = -\frac{1}{2}(x (-1))$
- 5 $y_{C} = 4$ stated or implied by 7
- 6 radius = 5 or equiv. stated or implied by •7
- $\bullet^7 (x-1)^2 + (y-4)^2 = 25$
- •8 y = 9
- \bullet^9 T= (-9,9)

[SQA] 13. Find the equation of the circle with centre (-3, 4) and passing through the origin.

	1	T I 24	noi	n-calc	Ca	lc	cal	c neut	Content Reference :	2.4
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	
										Source
·	2	2.4					2		2.4.3	1999 P1 qu.4

- •¹ $r^2 = 25$ stated or implied by •². •² $(x+3)^2 + (y-4)^2 = 25$
- [SQA] 14. The circle shown has equation

 $(x-3)^2 + (y+2)^2 = 25$.

Find the equation of the tangent at the point (6, 2).

2.4	nt Reference:	Conte	c neut	cal	de	ca	n-calc	noi	I lad		
	Additional	Main	A/B	С	A/B	С	A/B	С	Unit	marks	part
Source											
1998 P1 qu.4		2.4.4		4					2.4	4	

3

[SQA] 15. The straight line y = x cuts the circle

$$x^2 + y^2 - 6x - 2y - 24 = 0$$
 at A and B.

- (a) Find the coordinates of A and B.
- (b) Find the equation of the circle which has AB as diameter.

		Unit	noi	n-calc	Ca	dc	cal	c neut	Conte	nt Reference:	2.4
part	marks	Unit	C	A/B	C	A/B	С	A/B	Main	Additional	
(a)	3	2.4					3		2.4.4		Source
(b)	3	2.4					3		2.4.3		1994 P1 qu.8

- $\bullet^1 \qquad x^2 + x^2 6x 2x 24 = 0$
- OR
- centre is (2, 2)

- (x+2)(x-6)=0
- (-2,-2) and (6,6)

- radius is $\sqrt{32}$ or equivalent • $(x-2)^2 + (y-2)^2 = 32$
- (x-2) +(j

[SQA] 16. Diagram 1 shows a circle with equation

$$x^2 + y^2 + 10x - 2y - 14 = 0$$
 and a straight line, l_1 , with equation $y = 2x + 1$.

The line intersects the circle at A and B.

(a) Find the coordinates of the points A and B.

(b) Diagram 2 shows a second line, l_2 , which passes through the centre of the circle, C, and is at right angles to line l_1 .

- (i) Write down the coordinates of C.
- (ii) Find the equation of the line l_2 .

		Unit	nor	-calc	Ca	lc	calc	neut	Content Reference:	2.4
part	marks	Unit_	С	A/B	С	A/B	С	A/B	Main Additional	AL 1-3
(a)	5	2.4					5		2.4.4	Source
(<i>b</i>)i	1	2.4			1		1		2.4.2	1997 Paper 2
(b)ii	3	1.1					3		1.1.10 1.1.7	Qu.1

- (a) •1 know to substitute
 - correct substitution
 - a "quadratic" = 0
 - x = -3, 1
 - y = -5, 3
- (b) \bullet^6 $m_{diameter} = 2$
 - $m_{perpendicular} = -\frac{1}{2}$
 - 8 centre = (-1, -1)
 - equation: $y + 1 = -\frac{1}{2}(x + 1)$

[SQA] 17. AB is a tangent at B to the circle with centre C and

equation
$$(x-2)^2 + (y-2)^2 = 25$$
.

The point A has co-ordinates (10, 8).

Find the area of triangle ABC.

non-calc calc calc neut Content Reference: 2.4 part marks Unit Main Additional A/B Source 5 2.4.1 1.1.2, 0.1 5 2.4 1992 P1 qu.16

- strat: i.e find AC then AB
- e^2 centre = (2,2) and radius = 5
- 3 AC = 10
- $AB = \sqrt{75}$ units
- area = $\frac{25}{2}\sqrt{3}$ square units
- $[\mbox{SQA}] = 18. \ \mbox{The circle shown in the diagram has equation}$

$$(x-1)^2 + (y-1)^2 = 5$$

Tangents are drawn at the points (3, 2) and (2, -1).

Write down the coordinates of the centre of the circle and hence show that the tangents are perpendicular to each other.

OR

1	T Trait	no	n-calc	Ca	lc	cal	c neut	Conte	nt Reference :	2.4
part marks	Unit	C	A/B	С	A/B	С	A/B	Main	Additional	
4	2.4					4		2.4.1	1.1.9	Source
						_				1994 P1 qu.5

- centre = (1, 1)
 - $m_{radii} = \frac{1}{2}, -2$

- $\bullet^1 \qquad centre = (1,1)$
- •2 $r = \sqrt{5}, d = \sqrt{10}$

• $m_{lgts} = -2, \frac{1}{2}$

- Show $\hat{ACB} = 90^{\circ}$
- •4 $-2 \times \frac{1}{2} = -1 \Rightarrow \text{tgts are } \perp$
- State tangents L to radii

1

2

[SQA] 19. (a) The diagram shows a circle, centre P, with equation

 $x^2 + y^2 + 6x + 4y + 8 = 0.$

Find the equation of the tangent at the point A(-1, -1) on the circle.

P

- (b) The tangent crosses the y-axis at B. Find the coordinates of B.
- (c) Another circle, centre P, is drawn passing through B. The tangent at A meets the second circle at the point C, as shown in the diagram.

Write down the coordinates of C.

	marks	Unit	no	n-calc	ca	ılc	cal	c neut	Conte	nt Reference :	2.4
part	marks	Olut	C	A/B	С	A/B	C	A/B	Main	Additional	2.4
(a)	4	2.4					4		2.4.2	1.1.9	Source
(b)	1	0.1				'	1		0.1		1999 Paper 2
(c)	1	0.1					1		0.1		Qu. 2
(d)	2	2.4					2		2.4.4		

(a)
$$\bullet^1$$
 centre = $(-3,-2)$

$$\bullet^2$$
 $m_{rad} = \frac{1}{2}$

$$m_{tot} = -2$$

•4
$$y-(-1)=-2(x-(-1))$$

(b)
$$e^5$$
 $B = (0, -3)$

(c)
$$\bullet^6 C = (-2, 1)$$

(d)
$$r^2 = 5$$

•8
$$(x+1)^2 + (y+1)^2 = 5$$

(3)

(5)

20. In an experiment with a ripple tank, a [SQA] series of concentric circles with centre C(4,-1) is formed as shown in the diagram.

> The line *l* with equation y = 2x + 6represents a barrier placed in the tank. The largest complete circle touches the barrier at the point T.

- Find the equation of the radius CT. (a)
- Find the equation of the largest complete circle. (b)

calc neut non-calc C A/B calc C A/B Content Reference: part marks Unit 2.4 Main Additional Source 1.1 (a) 3 3 1.1.9, 1.1.7 1993 Paper 2 (b) 5 5 2.4 2.4.3 Qu.3

(a)
$$\bullet^1$$
 $m_l=2$

$$m_r = -\frac{1}{2}$$

$$y+1=-\frac{1}{2}(x-4)$$

(b)
$$e^4 (x-4)^2 + (y+1)^2 = r^2$$

•
$$(x-4)^2 + (2x+7)^2 = r^2$$

• $5x^2 + 20x + (65-r^2) = 0$

$$6 5x^2 + 20x + (65 - r^2) = 0$$

7
 $\Delta = 400 - 4 \times 5(65 - r^2) = 0$

$$r^2 = 45$$

(4)

(6)

[SQA] 21. (a) In the diagram, A is the point (-1, 1), B is (3, 3) and C is (6, 2). The perpendicular bisector of AB has equation y + 2x = 4. Find the equation of the perpendicular bisector of BC.

(b) Find the centre and the equation of the circle which passes through A, B and C.

part	marks	Unit	nor	ı-calc	ca	lc	calc	neut	Conte	nt Reference:	2.4
part	Hulks	Ottat	С	A/B	C	A/B	C	A/B	Main	Additional	
(a)	4	1.1					4		1.1.9,	1.1.7	Source
(b)	6	2.4				:	6		2.4.3,	1.1.2	1991 Paper 2 Qu. 2

(a)
$$\bullet^1 m_{RC} = -\frac{1}{3}$$

$$\bullet^2$$
 $m_{\perp} = 3$

• midpoint
$$BC = \left(\frac{9}{2}, \frac{5}{2}\right)$$

$$y - \frac{5}{2} = 3(x - \frac{9}{2})$$

(b)
$$^{5} y - 3x = -11$$

•6 perp. bisector passes thr' centre stated explicitly

•7 using
$$y-3x = -11$$
 and $y+2x = 4$

•
$$r^2 = 25$$

•10
$$(x-3)^2 + (y+2)^2 = 25$$

3

1

[SQA] 22. Two identical circles touch at the point P (9, 3) as shown in the diagram. One of the circles has equation $x^2 + y^2 - 10x - 4y + 12 = 0$

Find the equation of the other circle.

		t Iia	no	n-cale	C	dc	cal	c neut	Conte	nt Reference :	3.4
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main	Additional	2.4
											Source
Ι.	5	2.4			l		5		2.4.2	(3.1.6)	
					l						1997 P1 qu.12

- use P as midpoint of C₁C₂
- $C_1 = (5,2)$
- $C_2 = (13, 4)$
- radius = $\sqrt{17}$
- x^{-13} $(x-13)^2 + (y-4)^2 = 17$
- [SQA] 23. This diagram shows a computer-generated display of a game of noughts and crosses.

 Relative to the coordinate axes which have been added to the display, the "nought" at A is represented by a circle with equation $(x-2)^2 + (y-2)^2 = 4$.

- (a) Find the centre of the circle at B.
- (b) Find the equation of the circle at B.

	lea	Unit	noi	n-calc	Ca	ilc	cal	c neut	Content Reference:	2.4
part	marks	Unit	С	A/B	C	A/B	C	A/B	Main Additional	
(a)	3	2.4					3		2.4.1	Source
(b)	1	2.4					1		2.4.3	1993 P1 qu.5

- $radius_A = 2$
- e^2 centre_A = (2,2)
- 3 centre_B = (10,6)
- $(x-10)^2 + (y-6)^2 = 4$

[SQA] 24.

A bakery firm makes gingerbread men each 14cm high with a circular "head" and "body".

The equation of the "body" is $x^2 + y^2 10x - 12y + 45 = 0$ and the line of centres is parallel to the y-axis. Find the equation of the "head".

		Limit	no	n-calc	Ca	dc	cal	c neut	Conte	nt Reference :	2,4
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	
											Source
	5	2.4					5		2.4.2	2.4.3	1990 P1 qu.7

- centre of body = (5,6)
- radius of body = 4
- radius of head = 3
- centre of head = (5,13)
- $(x-5)^2 + (y-13)^2 = 9$

(8)

[SQA] 25. When newspapers were printed by lithograph, the newsprint had to run over three rollers, illustrated in the diagram by three circles. The centres A, B and C of the three circles are collinear.

The equations of the circumferences of the outer circles are

$$(x+12)^2 + (y+15)^2 = 25$$
 and $(x-24)^2 + (y-12)^2 = 100$.

Find the equation of the central circle.

Content Reference: non-calc calc calc neut 3.1 part marks Unit A/B A/B Main Additional Source 1995 Paper 2 8 3.1 8 2.4.1, 2.4.3, 3.1.6 Qu.8

- (-) 1 (-12,-15) and (24,12)
 - radii are 5 and 10
 - 3 AC = 45
 - \bullet radius = 15
 - •5 B divides AC in ratio 4:5
 - $\overrightarrow{OB} = \frac{1}{9} \left[4 \overrightarrow{OC} + 5 \overrightarrow{OA} \right]$ stated or implied
 - $\bullet^7 \qquad \overrightarrow{OB} = \frac{1}{9} \left[4 \begin{pmatrix} 24 \\ 12 \end{pmatrix} + 5 \begin{pmatrix} -12 \\ -15 \end{pmatrix} \right]$
 - •8 $(x-4)^2 + (y+3)^2 = 15^2$

(3)

(3)

[SQA] The shape shown in the diagram is composed of 3 semicircles with centres A, B and C which lie on a straight line.

C E (2, 4) D (-|1, 2)

DE is a diameter of one of the semicircles. The coordinates of D and E are (-1, 2) and (2, 4).

(a) Find the equation of the circle with centre A and diameter DE.

The circle with centre B and diameter EF has equation $x^2 + y^2 - 16x - 16y + 76 = 0$.

- (b) (i) Write down the coordinates of B.
 - (ii) Determine the coordinates of F and C.
- (c) In the diagram the perimeter of the shape is represented by the thick black line. **(3)** Show that the perimeter is $5\pi\sqrt{13}$ units.

		77-:4	noi	1-calc	Ca	lc	cal	c neut	Content Reference :	2.4
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main Additional	476-7
(a)	3	2.4					3		2.4.3	Source
(b)	3	2.4	1				3		2.4.2 & 3.1.6	1998 Paper 2
(c)	3	0.1	l		l		l	3	0.1	Qu. 6

(a)
$$e^1 A = (\frac{1}{2}, 3)$$

•
$$r^2 = \frac{9}{4} + 1$$
 or $d^2 = 13$

•
$$(x-\frac{1}{2})^2 + (y-3)^2 = \frac{13}{4}$$

6
 $C\left(\frac{13}{2},7\right)$

(c)
$$e^7 \frac{1}{2}\pi DF + \frac{1}{2}\pi DE + \frac{1}{2}\pi EF$$

(c)
$$\bullet^7 \quad \frac{1}{2}\pi DF + \frac{1}{2}\pi DE + \frac{1}{2}\pi EF$$

 $\bullet^8 \quad \frac{1}{2}\pi DF = \frac{5}{2}\pi\sqrt{13} \quad OR \quad \frac{1}{2}\pi EF = 2\pi\sqrt{13}$

•
$$\frac{5}{2}\pi\sqrt{13} + \frac{1}{2}\pi\sqrt{13} + 2\pi\sqrt{13}$$

(3)

(1)

27. [SQA]

A spherical hot-air balloon has radius 30 feet. Cables join the balloon to the gondola which is cylindrical with diameter 6 feet and height 4 feet. The top of the gondola is 16 feet below the bottom of the balloon.

16

Co-ordinate axes are chosen as shown in the diagram. One of the cables is represented by PB and PBA is a straight line.

- (a) Find the equation of the cable PB.
- (b) State the equation of the circle representing the balloon.

(c)	Prove that this cable is a tangent to the balloon	6	
	and find the co-ordinates of the point P.	(5)

part	marks	Unit	no	n-calc	ca	lc	cal	neut	Content Reference :	0.4
part	marks	Otal	C	A/B	С	A/B	С	A/B	Main Additional	2.4
(a)	3	1.1					3		1.1.1, 1.1.7	Source
(b)	1	2.4			1		I		2.4.3	1992 Paper 2
(c)	5	2.4		1			2	3	2.4.4	Qu.9

- Strategy: know to find m

 - $y + 46 = \frac{4}{3}(x 3)$
- $x^2 + y^2 = 900$ or equivalent
- Strategy: know to substitute
 - $x^2 + \left(\frac{4}{3}x 50\right)^2 = 900$
 - $(x-24)^2$ or evaluate the discriminant
 - communication relating to tangency
 - (24, -18)

(4)

- [SQA] 28.
- A sports club awards trophies in the form of paperweights bearing the club crest.

 Diagram 1 shows the front view of one of the

Diagram 1 shows the front view of one of these paperweights. Each is made from two different types of glass. The two circles are concentric and the base line is a tangent to the inner circle.

- Diagram 1
- (a) Relative to x, y coordinate axes, the equation of the outer circle is $x^2 + y^2 8x + 2y 19 = 0$ and the equation of the base line is y = -6. Show that the equation of the inner circle is $x^2 + y^2 - 8x + 2y - 8 = 0$.
- (b) An alternative form of the paperweight is made by cutting off a piece of glass from the original design along a second line with equation 3x 4y + 9 = 0 as shown in diagram 2. Show that this line is a tangent to the inner circle and state the coordinates of the point of contact.

		T121	noi	n-calc	ca	lc	calc	neut	Content Reference :	2.4
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main Additional	2.4
(a)	4	2.4					4		2.4.3	Source 1990 Paper 2
(b)	7	2.4	{			'	3	4	2.4.4	Qu. 8

- (a) \bullet^1 centre = (4, -1)
 - •² inner radius = 5
 - $x^3 (x-4)^2 + (y+1)^2 = 25$
 - completing argument
- (b) a^5 a = x 4y 3
 - $\left(\frac{4}{3}y 3\right)^2 + y^2 8\left(\frac{4}{3}y 3\right) + 2y 8 = 0$
 - 7 $\frac{16}{9}y^2 8y + 9 + y^2 \frac{32}{3}y + 24 + 2y 8$
 - $v^8 = v^2 6v + 9 = 0$
 - e.g. (y-3)(y-3)=0
 - •10 equal roots \Rightarrow line is a tangent
 - •11 (1.3)

(8)

(8)

[SQA] 29. A penny-farthing bicycle on display in a museum is supported by a stand at points A and C. A and C lie on the front wheel.

With coordinate axes as shown and 1 unit = 5cm, the equation of the rear wheel (the small wheel) is

$$x^{2} + y^{2} - 6y = 0$$
 and
the equation of the front wheel is
 $x^{2} + y^{2} - 28x - 20y + 196 = 0$.

- (a) (i) Find the distance between the centres of the two wheels.
 - (ii) Hence calculate the clearance, i.e. the smallest gap, between the front and rear wheels. Give your answer to the nearest millimetre.
- (b) B(7,3) is half-way between A and C, and P is the centre of the front wheel.
 - (i) Find the gradient of PB.
 - (ii) Hence find the equation of AC and the coordinates of A and C.

24	Content Reference :	neut	calc	lc	ca	n-calc	nor	Unit	marks	
Source	Main Additional	A/B	C	A/B	С	A/B	C	Unit	marks	part
Source										
1994 Paper 2	2.4.2, 1.1.2	- 1			- 8			2.4	8	(a)
Qu.4	1.1.1, 1.1.9, 2.4.4	- 1			8		1	1.1	Q	(b)

- (a) 1 centre (0, 3)
 - •² centre (14, 10)
 - distance between centres = $\sqrt{245}$
 - fradius = 3
 - radius = 10
 - strategy (clearance = distance between centres minus sum of radii)
 - 7 $\sqrt{245-13}$
 - •8 133 mm or equivalent

- (b) 9 $m_{PB} = 1$
 - $\bullet^{10} \qquad m_{AC} = -1$
 - y-3=-(x-7) for AC
 - •12 strategy: substitute
 - 13 substituting correctly
 - $eg 2x^2 28x + 96 = 0$
 - x = 6, 8 (or y = 2, 4)
 - •16 (6,4) and (8,2)