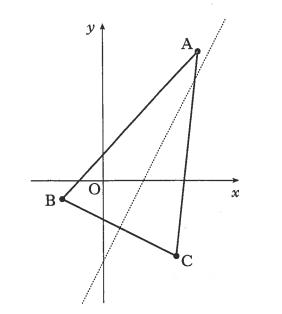
1. The vertices of triangle ABC are A(7, 9), B(-3, -1) and C(5, -5) as shown in the diagram.

The broken line represents the perpendicular bisector of BC.

- (a) Show that the equation of the perpendicular bisector of BC is y = 2x 5.
- (b) Find the equation of the median from C.
- (c) Find the coordinates of the point of intersection of the perpendicular bisector of BC and the median from C.



3

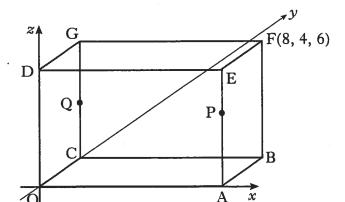
2. The diagram shows a cuboid OABC, DEFG.

F is the point (8, 4, 6).

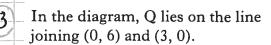
P divides AE in the ratio 2:1.

Q is the midpoint of CG.

- (a) State the coordinates of P and Q.
- (b) Write down the components of \overrightarrow{PQ} and \overrightarrow{PA} .
- (c) Find the size of angle QPA.

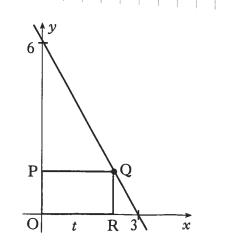


2 5



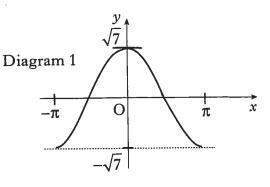
OPQR is a rectangle, where P and R lie on the axes and OR = t.

- (a) Show that QR = 6 2t.
- (b) Find the coordinates of Q for which the rectangle has a maximum area.



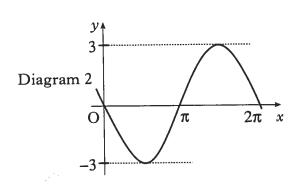
(a) (i) Diagram 1 shows part of the graph of y = f(x), where $f(x) = p\cos x$.

Write down the value of p.



(ii) Diagram 2 shows part of the graph of y = g(x), where $g(x) = q\sin x$.

Write down the value of q.



- (b) Write f(x) + g(x) in the form $k\cos(x + a)$ where k > 0 and $0 < a < \frac{\pi}{2}$.
- (c) Hence find f'(x) + g'(x) as a single trigonometric expression.

(a) Write down the centre and calculate the radius of the circle with equation $x^2 + y^2 + 8x + 4y - 38 = 0$.

2

(b) A second circle has equation $(x-4)^2 + (y-6)^2 = 26$. Find the distance between the centres of these two circles and hence show that the circles intersect.

4

2

(c) The line with equation y = 4 - x is a common chord passing through the points of intersection of the two circles.

Find the coordinates of the points of intersection of the two circles.

5

Solve the equation
$$\cos 2x^{\circ} + 2\sin x^{\circ} = \sin^2 x^{\circ}$$
 in the interval $0 \le x < 360$.

5