(i) A and B are acute angles such that $\tan A = \frac{3}{4}$ and $\tan B = \frac{5}{12}$.

Find the exact value of

(a) $\sin 2A$

2

(b) $\cos 2A$

1

(c) $\sin(2A + B)$.

- 2
- Find the equation of the tangent to the curve $y = 3x^3 + 2$ at the point where x = 1.
- (a) The function f is defined by $f(x) = x^3 2x^2 5x + 6$. The function g is defined by g(x) = x - 1. Show that $f(g(x)) = x^3 - 5x^2 + 2x + 8$.

4

(*b*) Factorise fully f(g(x)).

3

- (c) The function k is such that $k(x) = \frac{1}{f(g(x))}$.
 - For what values of x is the function k not defined?

- 3
- A sketch of the graph of y = f(x) where $f(x) = x^3 6x^2 + 9x$ is shown below. The graph has a maximum at A and a minimum at B(3,0).

(a) Find the coordinates of the turning point at A.

4

- (b) Hence sketch the graph of y = g(x) where g(x) = f(x+2) + 4. Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
- 2
- (c) Write down the range of values of k for which g(x) = k has 3 real roots.
- 1

(a) For a particular radioactive substance the mass m (in grams) at time t (in years) is given by

 $m = m_0 e^{-0.02t}$

where m_0 is the original mass.

If the original mass is 500 grams, find the mass after 10 years.

(2)

(b) The half-life of any material is the time taken for half of the mass to decay.

Find the half-life of this substance.

(3)

The graph of a function f intersects the x-axis at (-a,0) and (e,0) as shown.

There is a point of inflexion at (0, b) and a maximum turning point at (c, d).

Sketch the graph of the derived function f'.

3

(a) Solve the equation $\sin 2x^{\circ} - \cos x^{\circ} = 0$ in the interval $0 \le x \le 180$.

4

(b) The diagram shows parts of two trigonometric graphs, $y = \sin 2x^{\circ}$ and $y = \cos x^{\circ}$.

Use your solutions in (a) to write down the coordinates of the point P.

