FORTROSE ACADEMY

MATHEMATICS DEPARTMENT

Established 1791

Mathematics

Higher End of Course Assessment Examination 2009/2010

NATIONAL QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 & 2 Paper 1

Time allowed - 50 minutes

Read carefully

Calculators may NOT be used in this paper.

Section A - Questions 1 - 10 (20 marks)

Instructions for the completion of **Section A** are given on the next page.

For this section of the examination you should use an HB pencil.

Section B (17 marks)

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a,b) and radius r.

Trigonometric formulae:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Scalar Product:

 $a \cdot b = |a||b|\cos\theta$, where θ is the angle between a and b.

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
sin ax cos ax	$a\cos ax - a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
sin ax cos ax	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives A, B, C or D. Indicate the correct answer on the answer grid provided.

Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

- 1. The function $f(x) = 2\sin x^{\circ} + \cos x^{\circ}$ has a **minimum** value of
 - $\mathbf{A} = -2$
 - \mathbf{B} 0
 - **C** -3
 - **D** $-\sqrt{5}$
- 2. Which of the following is a correct assumption from the statement $\log_b a = c$?
 - $\mathbf{A} \qquad a^{\circ} = b$
 - $\mathbf{B} \qquad c'' = b$
 - \mathbf{C} $b^{\circ} = a$
 - $\mathbf{D} \qquad c^h = a$
- 3. What is the value of $\int_0^{\pi} \sin x \, dx ?$
 - A = -2
 - B +1
 - **C** + 2
 - **D** ()
- 4. P and Q have position vectors $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$ respectively.

The length of PQ is

- A 1
- $\mathbf{B} \qquad \sqrt{17}$
- \mathbf{C} $\sqrt{21}$
- $\mathbf{D} \qquad \sqrt{13}$

- 5. Given that $\cos P = \frac{1}{\sqrt{6}}$, where $0 , the value of <math>\cos 2P$ is
 - A $\frac{1}{\sqrt{3}}$
 - $\mathbf{B} \qquad \frac{2}{\sqrt{6}}$
 - $\mathbf{C} \qquad \frac{\sqrt{5}}{\sqrt{6}}$
 - **D** $-\frac{2}{3}$
- 6. An equation is such that $\log x + \log(x+1) = \log 6$, where x > 0.

The value of x is

- **A** 2
- B 1
- **C** 3
- **D** 6
- 7. The gradient of the tangent to the curve $y = \sin x^\circ$ at the point where $x = \frac{\pi}{3}$ is
 - $\mathbf{A} \qquad \frac{\sqrt{3}}{2}$
 - $\mathbf{B} \qquad \frac{1}{2}$
 - C $-\frac{1}{2}$
 - **D** 0
- 8. Vectors a and b are such that |a| = |b| = 2 with P being the angle between the vectors.

If $a \cdot b = 0.8$, the value of $\cos P$ is

- $\mathbf{A} = 3 \cdot 2$
- **B** () · 4
- **C** 0 · 2
- **D** 0.05

- 9. The gradient of the tangent to the circle $x^2 + y^2 + 6x 4y 4 = 0$ at the point (1.3) on the circumference is
 - $\mathbf{A} \qquad \frac{1}{4}$
 - B -4
 - C $-\frac{1}{4}$
 - **D** $\frac{2}{5}$
- 10. The recurrence relation $u_{n+1} = ku_n + 10$ has a limit of 25. What is the value of k?
 - **A** -0.4
 - **B** 0.4
 - **C** 0.6
 - **D** -0.6

[END OF SECTION A]

SECTION B

ALL questions should be attempted

- N.9. A function is defined on a suitable domain as $f(x) = \frac{-16}{(2x-1)^2}$.
 - (a) Show clearly that the derivative of this function can be written in the form

$$f'(x) = \frac{k}{(2x-1)^n}$$

and write down the values of k and n.

(b) Hence find x when f'(x) = 1 and x > 0.

12.10. A circle, $x^2 + y^2 - 2x - 10y + 6 = 0$, is cut by a line x - 3y + 4 = 0

(a) Find the two points of intersection.

5

4

(b) These two points are the end points of a diameter of another circle. Find the equation of this circle.

3

(c) Decide whether the point (0, 4) lies within, without or on this second circle.

2