FORTROSE ACADEMY

MATHEMATICS DEPARTMENT

Established 1791

Mathematics
Higher End of Course Assessment
Examination 2011/2012

NATIONAL QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 & 2 Paper 2

Time allowed - 50 minutes

41 marks

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Scalar Product:

 $a \cdot b = |a||b|\cos\theta$, where θ is the angle between a and b.

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
sin ax cos ax	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

1. In the diagram P, Q, and R have coordinates P(3, 4, -1), Q(0, 6, -6) and R(k, 8, -10) respectively.

(a) Given that angle PQR is a right-angle, find the value of k.

_

- (b) Calculate the size of angle RPS where S is the mid-point of QR.
- 6

2. A Baryon particle decays according to the formula $M_t = M_o e^{-0.0009t}$, where M_o is the intitial mass of the substance and M_t is the mass remaining after t seconds.

Calculate, to the nearest ten seconds, how long a sample would take to lose 30% of its original mass.

5

3. (a) Express $3\cos x^{\circ} + \sqrt{7}\sin x^{\circ}$ in the form $k\sin(x+a)^{\circ}$, where k and a are constants and k > 0.

5

(b) Hence state the **minimum** value of f given that $f(x) = \frac{20}{3\cos x^\circ + \sqrt{7}\sin x^\circ}$.

- 4. A sequence of numbers is defined by the recurrence relation $U_{n+1} = aU_n + 8$, where a is a constant.
 - (a) Given that $U_0 = 16$, show that, in terms of a, $U_2 = 8(2a^2 + a + 1)$.

2

(b) Hence find a, where a > 0, given that $U_2 = 11$.

3

5. The diagram shows how two circles can have three common tangents.

The circle centre C cuts the x-axis at B and D and has equation $x^2 + y^2 - 10x + 16 = 0$.

- (a) (i) Find the centre and radius of this circle.
 - (ii) State the coordinates of B and D.

3

(b) Two of the common tangents pass through the origin and so have equations of the form y = mx where m is a constant.

Find the values of m for which y = mx is a tangent to the circle centre C.

4

(c) The triangle OPQ is an enlargement of triangle ORS. By considering the enlargement factor, find the equation of the circle centre A.

3

6. The graph shows the two curves $y = \sin x^0$ and $y = 1 - 2\cos 2x^0$ intersecting in the interval $0 \le x < 360$.

Calculate to one decimal place, the values of x at which this occurs.

[END OF SECTION B]

5

[END OF QUESTION PAPER]