Mathematics

NATIONAL QUALIFICATIONS

Higher Prelim Examination 2010/2011

Paper 2

Assessing Unit 3 + circle + revision from Units 1 & 2

Time allowed - 50 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Scalar Product:

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} .

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3 \text{ where } \boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \text{ and } \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Table of standard derivatives:

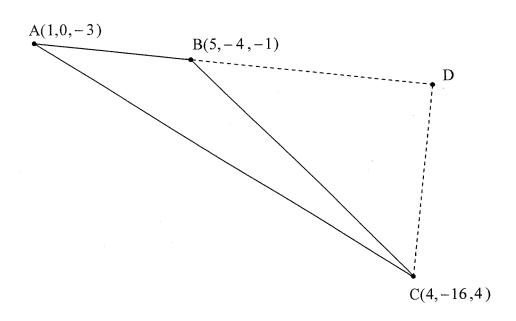

f(x)	f'(x)
sin ax cos ax	$a\cos ax$ $-a\sin ax$

Table of standard integrals:

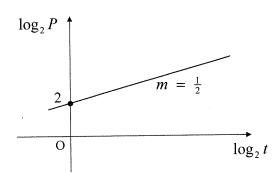
f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$

Triangle ABC has vertices A(1,0,-3), B(5,-4,-1) and C(4,-16,4) respectively. 1.

A, B and D are collinear such that $\frac{AB}{BD} = \frac{2}{3}$.

Find the coordinates of D. (a)

2


Hence show clearly that angle ADC is a right angle. (b)

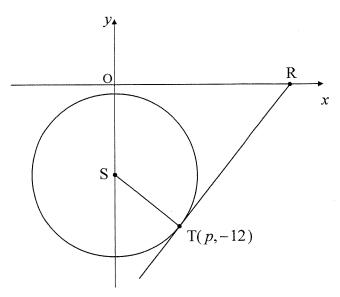
4

Calculate the size of angle ABC (c)

3

The diagram, which is not drawn to scale, shows part of a graph of $\log_2 P$ against $\log_2 t$. 2. The straight line has a gradient of $\frac{1}{2}$ and passes through the point (0,2).

3


Find an equation connecting t and P. (a)

Hence show clearly that when $P = \sqrt{8} + 4$, t takes the value $\frac{1}{2}(3 + 2\sqrt{2})$ (b)

3

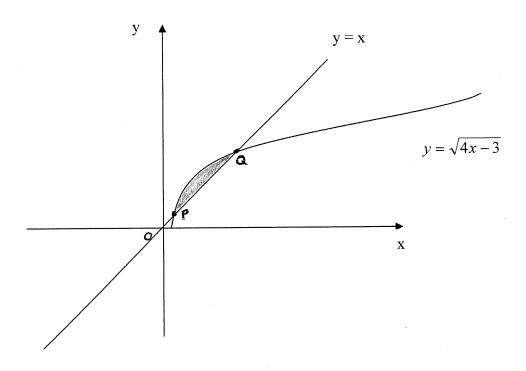
3. The circle, centre S, has as its equation $x^2 + y^2 + 16y + 12 = 0$.

T(p,-12) is a point of tangency.

- (a) Find the value of p, the x-coordinate of T.
- (b) Write down the coordinates of S, the centre of the circle.

2

3


- (c) Find the equation of the tangent through T and hence state the coordinates of R.
- (d) Establish the equation of the circle which passes through the points S, T and R. 3
- 4. The radioactive element Strontium-90 can be used in production of Nuclear Power. It decays according to a law of the form $y = y_o e^{kt}$ where y is the amount of radioactive substance present at time t years and y_o is the initial amount of radioactive substance.
 - (a) The half-life of Strontium (i.e. the time taken for half the radioactive substance to decay) is 28.8 years. Find the value of k correct to 3 significant figures.
 - (b) What percentage of Strontium in a sample will still be present after 50 years?

- 5. The diagram below shows sections of the graphs of $y = \sqrt{4x-3}$ and y = x
 - (a) Find the x-coordinates of the points P and Q

3

(b) Calculate the shaded area.

4

[END OF QUESTION PAPER]