Higher Still Mathematics

HIGHER GRADE Paper I

November Prelim 45 minutes

All questions should be attempted

Marks

1. A function is defined by the formula

$$f(x) = 4x^2(x-3), \quad x \in R$$

- (a) Write down the coordinates of the points where the curve with equation y = f(x) meets the coordinate axes. (2)
- (b) Find the stationary points of y = f(x) and determine the nature of each. (6)
- (c) Sketch and annotate the curve y = f(x) (2)
- 2. A mushroom grower harvests 20% of her stock at the end of every week. During the week another 100 mushrooms will become ready for picking.
 - (a) Write a recurrence relation to model the situation, using u_n to represent the number of mushrooms ready for picking at the start of each week.
 - (b) If growing conditions are maintained, comment on long-term levels of the mushroom crop. (4)
- 3. Differentiate $3x^{\frac{1}{2}} + \frac{2}{\sqrt{x}}$ with respect to x. (2)
- 4. The diagram below shows a sketch of the graph of y = f(x), where $f(x) = \log_2 x$

Make a copy of this graph. (Your copy need not be exact). (3)

On your copy, sketch and annotate the graph of $y = f^{-1}(x)$, the inverse of f(x).

- 5. The diagram below shows the graph of a cubic function f which has
 - (i) a maximum turning point at (b, c)
 - (ii) a minimum turning point at (d, e), and
 - (iii) a tangent, at the point (0, a), inclined at 45° to the x-axis.

- (a) State the values of f'(b), f'(d) and f'(0). (2)
- (b) Sketch the graph of the derived function f'(x). (2)
- 6. The graph of y = f(x) for $-2 \le x \le 2$ is indicated. On separate axes sketch and annotate the graphs of:
 - (a) y = -f(x),
 - (b) y = 3 + f(x).
- - (b) $2\tan^2\frac{\pi}{4} 2\cos^2\frac{\pi}{4}$ (3)

2

(4)

(1)

[END OF QUESTION PAPER]