Apply Trig Skills to Manipulate Expressions

1.

(a) Using the fact that $\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$, find the exact value of $\sin \left(\frac{7 \pi}{12}\right)$.
(b) Show that $\sin (A+B)+\sin (A-B)=2 \sin A \cos B$.
(c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.
(ii) Hence or otherwise find the exact value of $\sin \left(\frac{7 \pi}{12}\right)+\sin \left(\frac{\pi}{12}\right)$.
2.

On the coordinate diagram shown, A is the point $(6,8)$ and B is the point $(12,-5)$.

Angle $\mathrm{AOC}=p$ and angle $\mathrm{COB}=$.
Find the exact value of $\sin (p+q)$.

(4)
3.

The framework of a child's swing has dimensions as shown in the diagram on the right. Find the exact value of $\sin x$.

4.

The diagram shows a circle of radius 1 unit and centre the origin.
The radius OP makes an angle a° with the positive direction of the x-axis.

(a) Show that P is the point $\left(\cos a^{\circ}, \sin a^{\circ}\right)$.
(b) If angle $\mathrm{POQ}=45^{\circ}$, deduce the coordinates of Q in terms of a.
(c) If angle $\mathrm{POR}=45^{\circ}$, deduce the coordinates of R in terms of a.
(d) Hence find an expression for the gradient of $Q R$ in simplest form.

