<u>PROOF</u>

Symbol

Meaning

"Implies" it if --. Hhen

ey
$$x=3 = 7$$
 $x=9$

(not have backwards)

"Implied by" ey $(x+2)=3$
 $= x=1$ (x could be -5 too)

"If and only if" ey $x+2=3$

ey $x=3 = 7$ $x=9$

(not have backwards)

(= $x=1$ (x could be -5 too)

We will consider four methods of proof.

- 1. Direct Proof
 - start with known truth and by a succession of correct deductions finish with the required result.
- 2. Proof by Contradiction
 - assume the opposite is true and show that this cannot be true.
- 3. Proof by Contrapositive
- 4 <u>Proof by Induction</u> Already done

Direct Proof

Example

Prove that if a and b are any two real numbers then a < b implies that $a < \frac{a+b}{2}$

1.5 Applying Algebraic and Geometric Skills to Methods of Proof

Example

Prove that if n is odd then $(n+2)^2 - n^2$ is a multiple of 8. (use a direct proof)

n is odd so let
$$N = (2k+1)$$

so $(n+2)^2 - n^2$
= $(2k+1+2)^2 - (2k+1)^2$
= $(2k+3)^2 - (4k^2 + 4k + 1)$
= $(4k^2 + 12k + 9 - 4k^2 - 4k^2$

Example Prove that

$$|x+y| \le |x| + |y|$$

given that

(a)
$$|x| = +\sqrt{x^2}$$

$$(b) \quad |xy| = |x||y|$$

(c)
$$xy \le |xy|$$

$$(x+y)^2 \in |x|^2 + 2|x||y| + y^2$$

 $(x+y)^2 \in |x|^2 + 2|x||y| + |y|^2$
 $(x+y)^2 \in (|x|+|y|)^2$
 $(x+y)^2 \in J(|x|+|y|)^2$
 $|x+y| \in |x|+|y|$ by (a)

as regurred

1.5 Applying Algebraic and Geometric Skills to Methods of Proof

Example

Prove that if S(n) is the sum of the first n natural numbers then $S(n) = \frac{1}{2}n(n+1)$ $S(n) = 1+2+3+4+\dots + (n-1)+n$ Write backwards $S(n) = n+(n-1)+(n-2)+(n-3)+\dots + 2+1$ Add $2S(n) = (n+1)+(n+1)+(n+1)+\dots + (n+1)+(n+1)$ 2S(n) = n(n+1) 2S(n) = n(n+1) $S(n) = \frac{1}{2}n(n+1)$ as required.

Example

Prove that $n^3 - n$ is always divisible by 6.

Note we can unte (h3-n)/6 which means n3-n is divisible by 6.

Maths in Action Book 2 Page 5 Exercise 1B Questions 1,2

worksheet)

Page 10 Exercise 2A Questions 1, 2, 7

Proof by Contradiction

To prove a conjecture (statement) by contradiction we assume that the conjecture is false and then show that this leads to a conclusion that is false. This then shows that the original conjecture must actually have been true.

Hints

- If assuming an expression is rational write it as $\frac{m}{n}$ where $m, n \in \mathbb{Z}$ and they have no common factors.
- If assuming an expression is even write it as 2k where $k \in \mathbb{Z}_{\infty}$ must state this too.
- If assuming an expression is odd write it as 2k+1 where $k \in \mathbb{Z}$

Examples

1. Prove by contradiction that if \underline{m}^2 is even then so is \underline{m} $(m \in N)$

given this e assume this is false.

so must be true is m is odd.

Advanced Higher Maths: Unit 3 1.5 Applying Algebraic and Geometric Skills to Methods of Proof

2. Prove by contradiction that $\sqrt{3}$ is irrational. Cassume false ie Is is rahunal as is rahural. Assume m, n & Z and m and in have no common factor iè 13 = m where 3 = m2 Squire => m is a multiple of 3 let M=3P (3p) = 31/L 9p=3n4 12=3p2 so ne is a multiple of 3 so it is a multiple of s. m and n have a common Packer 3 So This contradits initial assumption so 15 is irrahunal

1.5 Applying Algebraic and Geometric Skills to Methods of Proof

3. Prove by contradiction that $log_{10} 5$ is irrational.

ASSOME lugio 5 is irrational.

le lugio 5 = M fer m, n & Z

where m and n

have no amman factor.

=> 5=10^m 5n = 10m

This is not possible because 5th has last digit 5.

This gives a contradiction so the original assumption is false.

iè 10905 is irrahanal.

1.5 Applying Algebraic and Geometric Skills to Methods of Proof

4. Prove by contradiction that
$$\frac{a+b}{2} \ge \sqrt{ab}$$
 $\forall a,b \in N$

Assume that
$$ab < ab$$
 ab for some $a, b + N$
 $\Rightarrow a + b < 2 ab$
 $(a+b)^2 < bab$
 $(ab)^2 < bab$
 $a^2 + 2ab + b^2 < bab$
 $a^2 - 2ab + b^2 < 0$
 $(a-b)^2 < 0$
 $ab = ab > 0$

- To prove by confiderions of what you are. trying to prove.
 - . Show that this does not work.

=> assumption is involved => original statement is true.

· to prove irrahinal, assume rahanal in firm of where m, n have no common factor

Maths in Action Book 2 Page 14 Exercise 3A Questions 1, 2, 6

Page 118 Exercise 2B Questions 1, 3

Counter Examples

To disprove a statement only <u>one</u> counter-example needs to be given (ie <u>one</u> example which does <u>not</u> work)

Examples

1. Find a counter example to disprove the conjecture that if 0 < a < b then a'' < b'' for n < 0.

$$a = \frac{1}{2} \quad b = 1 \quad n = -2$$

$$a^n = \left(\frac{1}{2}\right)^{-2} \quad b^n = 1^{-2}$$

$$= 2^2 \quad = 1$$

$$= 0 \quad \text{so conjective is false}$$

2. Find a counter example to disprove the conjecture that $n^2 + n + 41$ is a prime number for all $n \in N$.

The Infinity of Primes

There is an infinite number of primes.

A proof by animalian

<u>Proof</u>

Suppose that there is a finite number of primes.

Pi, Pi, p3, --- pn for some n.

Consider the number

 $N = (p_1 \times p_2 \times p_3 \times \dots \times p_n) + 1$

New N is not divisible by p1, p2, p3, -- pn since on dividing by any one of them leaves a remainder 1. But N must have at least one pnine feuter so there is a prime number other than p1, p2, --- pn. This contradicts our initial assumption which must then be false. Hence there is an infinite number of primes.

The Converse

To form the <u>converse</u> of an *If-then* sentence, exchange the hypothesis and conclusion.

The converse of

If p, then q,

where p and q are sentences, is

If q, then p

Clearly, if an *If-then* sentence is true, its converse is not necessarily true.

Example

State the converse of each statement, and then decide whether the converse is true. (Note that each statement is true.)

- a) If a number ends in 5, then it is a multiple of 5.

 If a number is a multiple of 5, then it ends in 5.

 False ey 20 is a multiple of 5.
- b) If a number is a multiple of 10, then it ends in 0.

 If a number ends in 0, then it is a multiple of 10.

 True.

Example

State the converse of All right angles are equal.

All equal angles are right-angles.

"if and only if"

When a statement If a, then b and its converse If b, then a are both true, we say "a if and only if b."

In other words, a is both necessary and sufficient for b.

For example,

A triangle is isosceles if and only if the base angles are equal.

This means

If a triangle is isosceles, then the base angles are equal

and conversely,

If the base angles are equal, then the triangle is isosceles.

Example

What does it mean to say, "A number is a multiple of 10 if and only if it ends in 0"? If a number is a multiple of 10 then it ends in 0 and convosely if a number ends in 0 than it is a multiple of 10.

Example

Which of these if and only if statements is true. Explain.

- a) A number is divisible by 6 if and only if it is divisible by both 2 and 3.
- b) A number is a multiple of 9 if and only if it is a multiple of 3.
- c) A fraction is in lowest terms if and only if the numerator and denominator have no common divisors except 1.

(a) The because if a number is divisible by 6. then it is divisible by both 2 and 3 and converely

- (b) False It is true that if a number is a multiple of 9 than it is a multiple of 3, but the converse is false eg 6.
- (c) True because if a fraction is in lowest tems then the numerator and denominator have no common divisors ex

The Negation of a Statement

The negation of a statement p is a statement saying the opposite to p. e.g. if p is x > 3 then its negation is x is not greater than 3 or $x \le 3$. We denote the negation of p by \sim p.

Example

For each of these statements p state its negation ~p.

(a)
$$p: x > 0, x \in Z$$

$$x \in 0$$
, $x \in Z$

(b) p:
$$\sqrt{x}$$
 is rational

Contra positive

If a sentence has the form:

if a, then b.

then

if not-b, then not-a. or

is called it the <u>contrapositive</u> of "if a, then b." The hypothesis and conclusion are exchanged and contradicted.

We say that a statement and its contrapositive are "logically equivalent." That is a technical way of saying that they mean the same. They will either <u>both</u> <u>be true or both be false.</u>

"if p then q" is true \Leftrightarrow "if \sim q then \sim p" is true.

Examples

- 1. State the contrapositive.
 - a) If a number ends in 6, then it's even.
 - b) If two lines are parallel, then they do not meet.
 - (a) If a number is not even then it does not end in a 6
 - (b) If two lines meet then the two lines are not parallel.

1.5 Applying Algebraic and Geometric Skills to Methods of Proof

2. Prove, by using the contrapositive, that if m, n are integers and mn = 100 then either $m \le 10$ or $n \le 10$.

3. Prove, by using the contrapositive, that if 7 is not a factor of n^2 then 7 is not a factor of n.

Statement If 7 is not a factor of no then 7 is not a factor of n.

Contrapositue if 7 is a Rocker of n, then 7 is a factor of n2.

4. Prove, by using the contrapositive, that if x and y are integers and xy is odd then both x and y are odd.

Statement if my is odd then both m and y are odd. Contrapositive if m and Ict y are even then my is even.

Proof x and y both even. x = 2n y = 2m $n, m \in Z$ xy = 4nm which is even.

x = 2n y = 2m+1xy = 2n (2m+1) which is even.

x = 2n+1 y = 2mxy = (2n+1)2m which is even.

Contrapositive true. 50 statement is true.