Fortrose Academy

Established 1791

Prelim Examination 2006/2007 (Assessing Units 1 & 2)

MATHEMATICS Higher Grade - Paper I (Non~calculator)

Time allowed - 1 hour 10 minutes

Read Carefully

- 1. Calculators may not be used in this paper.
- Full credit will be given only where the solution contains appropriate working.
 Answers obtained by readings from scale drawing.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This examination paper contains questions graded at all levels.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

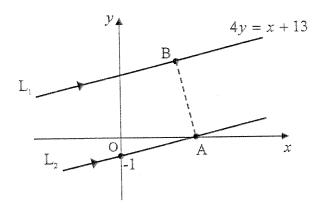
 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$


$$= 1 - 2\sin^2 A$$

All questions should be attempted

1. Two functions, defined on suitable domains, are given as

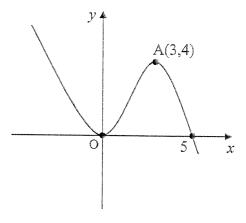
$$f(x) = x(x^2 - 1)$$
 and $g(x) = x - 1$.

- Show that the composite function, h(x) = f(g(x)), can be written in the form $h(x) = ax^3 + bx^2 + cx$, where a, b and c are constants, and state the value(s) of a, b and c.
- 4
- (b) Hence solve the equation h(x) = 6, for x, showing clearly that there is only one solution.
- 4
- 2. Part of the line, L_1 , with equation 4y = x + 13, is shown in the diagram. The line L_2 is parallel to L_1 and passes through the point (0,-1). Point A lies on the x-axis.

- (a) Establish the equation of line L₂ and write down the coordinates of the point A.
- 3
- (b) Given that the line AB is perpendicular to both lines, find, algebraically, the coordinates of point B.
- 5

(c) Hence calculate the exact shortest distance between the lines L_1 and L_2 .

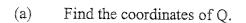
2

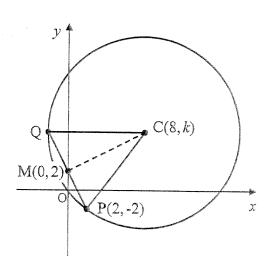

3. For what value of p, where p > 0, does the equation $(p^2 + 11)x^2 - 12px + p^2 = 0$ have equal roots?

6

4. Given that $\sin A = \frac{2}{\sqrt{6}}$ and $\cos B = \frac{\sqrt{2}}{\sqrt{3}}$, with angles A and B both being acute, show clearly that

$$3\cos(A-B) = 2\sqrt{2}.$$


5. The diagram shows part of the graph of y = f(x).


Sketch the graph of y = -[f(x+3)] marking clearly the **new** positions of the highlighted points and stating their new coordinates.

- 6. A function, f, is defined on a suitable domain as $f(x) = \frac{1}{x} (x^2 \sqrt{x})$.
 - (a) Differentiate f with respect to x, expressing your answer with positive indices.
 - (b) Hence find x when f'(x) = 5.
- 7. A circle, centre C(8, k), has the points P(2,-2) and Q on its circumference as shown.

M(0,2) is the mid-point of the chord PQ.

- (b) Given that radius CQ is horizontal, write down the value of k, the y-coordinate of C.
- (c) Hence establish the equation of the circle.

Thomas and

6

3

4

3

1

3

- 8. A sequence is defined by the recurrence relation $U_{n+1} = aU_n + 20$, where a is a constant.
 - (a) Given that $U_0 = 10$ and $U_1 = 26$, find a.

2

(b) Find the value of S_2 , if $S_2 = U_1 + U_2$.

2

9. A curve has as its derivative $\frac{dy}{dx} = 3x^2 - 4x$.

Given that the point (3,-7) lies on this curve, express y in terms of x.

4

- 10. A function is given as $f(\theta) = 4\cos^2 2\theta + 8\cos 2\theta + 6$ for $0 \le \theta \le \pi$.
 - (a) Express the function in the form $f(\theta) = a(\cos 2\theta + b)^2 + c$ and write down the values of a, b and c.

4

(b) Hence state the minimum value of this function and the corresponding replacement for θ .

3

[END OF QUESTION PAPER]