NUMBER THEORY

The Division Algorithm / Euclidean Algorithm

The GREATEST COMMON DIVISOR (gcd) of a and b can be denoted by (a, b) when the context is unambiguous.

Consider

$$203 \div 4 = 50r3$$

SO

$$\frac{203}{4} = 50 + \frac{3}{4}$$

203 is the DIVIDEND

4 is the **DIVISOR**

50 is the **QUOTIENT**

REMAINDER 3 is the

The relationship between these four numbers can also be expressed as $203 = 4 \times 50 + 3$

In fact, given any positive integers a and b $(b \neq 0)$ there exist unique integers q and r

where $0 \le r < b$, such that

$$a = bq + r$$

This is the **DIVISION ALGORITHM**.

If
$$a = bq + r$$
 then $(a, b) = (b, r)$

The repeated application of this until the gcd (greatest common divisor) is identified is known as the EUCLIDEAN ALGORITHM.

$$|2 = 1 \times 10 + 2 \qquad (04,10) = (10,4)$$

$$10 = 5X2 + 0.$$

$$34 = 2 \times 12 + 10$$
 (34,12) = (12,10)

$$(10,2) = (2,0)$$

NB
$$(b, 0) = b$$

Regrectest common divisor of b and $0 + b = 0$

Advanced Higher Maths Unit 3 1.4 Applying Algebraic Skills to Number Theory

Examples

1. Find the gcd of 203 and 4.

$$203 = 50 \times 4 + 3 \qquad (203, 4) = (4,3)$$

$$4 = 1 \times 3 + 1 \qquad = (1,0)$$

$$3 = 3 \times 1 + 0 \qquad = (1,0)$$

$$= (1,0)$$

$$= 1 \times 3 \times 1 + 0$$

$$= (1,0)$$

$$= 1 \times 3 \times 1 + 0$$

The greatest common divisor of 203 and 4 is one.

2. Find the gcd of 132 and 424

$$423 = 3 \times 132 + 28$$

$$132 = 4 \times 26 + 20$$

$$28 = 1 \times 20 + 8$$

$$20 = 2 \times 8 + 4$$

$$8 = 2 \times 4 + 0$$

$$(424, 132) = (132, 28)$$

$$= (26, 20)$$

$$= (20, 8)$$

$$= (18, 4)$$

$$= (4, 0)$$

$$g(c) = 4$$

Advanced Higher Maths Unit 3 1.4 Applying Algebraic Skills to Number Theory

If the gcd of two numbers is 1, they are said to be relatively prime or co-prime.

Example

Find the gcd of 140 and 252.

$$252 = | x | 40 + | 12$$

$$| 40 = | x | 12 + 28$$

$$| 112 = | 4x28 + 0 |$$

The gcd as a Linear Combination

If d is the greatest common divisor of a and b then there exist integers s and t such that d = as + bt

Example

1. Express the gcd of 2695 and 1260 in the form 2695s + 1260t where S, $t \in Z$

Find the gcd first.

$$26.95 = 2 \times 1260 + 175$$
 © (26.95, 1260)- (1260) 175 | 1260 = $7 \times 175 + 35$ = $(35,0)$ | $(35,0)$ | $(35,0)$ | $(35,0)$

Norting backwards.

0 gives
$$35 = 1260 - 7 \times 175$$

$$= 1260 - 7 \times (2695 - 2 \times 1260)$$

$$= 1260 - 7 \times 2695 + 14 \times 1260$$

$$= 15 \times 1260 - 7 \times 2695$$

$$= 2695 \times (-7) + 1260 \times (15)$$

so
$$S = -2$$
 and $t = 15$

Advanced Higher Maths Unit 3

1.4 Applying Algebraic Skills to Number Theory

- 2. Exam Question
 - (a) Use the Euclidean Algorithm to obtain the greatest common divisor of 3255 and 4785
 - (b) Hence find the two integers x and y such that 3255x + 4785y = 360

(a)
$$4785 = 1 \times 3255 + 1530$$
 $(4785, 3255) = (3255, 1530)$ $3255 = 2 \times 1530 + 195$ $= (1530, 195)$ $1530 = 7 \times 195 + 165$ $= (195, 165)$ $= (165, 30)$ $= (165, 30)$ $= (30, 15)$ $= (30, 15)$ $= (15, 0)$

gcd = 15

Mulhply by 12
$$360 = 3255 \times 300 - 4785 \times 204$$

Maths in Action book3 p147 Exercise 5 Q 1 − 7

Number Bases

We are used to working with numbers in base 10. This means that are column headings are

$$10^4 10^3 10^2 10^1 10^0$$

So the number 62314 is

i.e.
$$62314_{10} = 6 \times 10^4 + 2 \times 10^3 + 3 \times 10^2 + 1 \times 10^1 + 4 \times 10^0$$

We can write numbers in other bases in a similar way.

Example

For base 5 the column headings are

so
$$5^{4} 5^{3} 5^{2} 5^{1} 5^{0}$$

$$33224_{5} = 3 \times 5^{4} + 3 \times 5^{3} + 2 \times 5^{2} + 2 \times 5^{1} + 4 \times 5^{0}$$

$$= 2314_{10}$$

Note

In base 5 the highest digit we can have is 4 In base 2 the highest digit we can have is 1. etc

Example

- 1. Write the following numbers in base 10.
- (a) 101101₂

(a)
$$\frac{2^5}{1} \frac{2^4}{0} \frac{2^3}{1} \frac{2^2}{1} \frac{2^6}{1} \frac{2^6}{1}$$

 $\frac{1}{101012} = 1 \times 2^0 + 1 \times 2^1 + 1 \times 2^3 + 1 \times 2^5$
 $= 1 + 4 + 8 + 32$
 $= 45_{10}$
(b) $\frac{4^3}{1} \frac{4^2}{2} \frac{4^1}{2} \frac{4^0}{3}$
 $= 64 + 32 + 8 + 3$
 $= 64 + 32 + 8 + 3$
 $= 107_{10}$

6

Advanced Higher Maths Unit 3 1.4 Applying Algebraic Skills to Number Theory

2. Express 1467_{10} in base 6.

$$1667 \div 6 = 2646 + 3$$
 $2646 \div 6 = 60 + 4$
 $6 \div 6 = 1 + 0$
 $1 \div 6 = 0 + 1$
 367×6

3. Express 1213₄ in base 5.

0

Write in base 10 Risk
$$12134 = 1x63 + 2x44 + 1x64 + 3x60$$

$$= 66 + 32 + 6 + 3$$

$$= 103$$

$$103 \div 5 = 20 + 3$$

$$20 \div 5 = 4 + 0$$

$$4 \div 5 = 0 + 4$$

$$12136 = 1036 = 6035$$

The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic states that every positive integer can be expressed uniquely as the product of one or more primes.

Examples

$$360 = 2^3 \times 5 \times 9$$

NAB Style Questions

- 1. Use the Euclidean algorithm to obtain (1365, 299)
- 2. Use the Euclidean algorithm to obtain (5187, 760)

Exam Style Question

• Use the Euclidean algorithm to find integers x and y such that 9454x + 6873y = 29

(1)
$$1365 = 4x 299 + 169$$
 $(1365, 299) = (299, 169)$
 $299 = 1 \times 169 + 130$ $= (169, 130)$
 $169 = 1 \times 130 + 39$ $= (130, 39)$
 $130 = 3 \times 39 + 13$ $= (39, 13)$
 $39 = 3 \times 13 + 0$ $= (13, 0)$
 $39 = 3 \times 13 + 0$ $= (13, 0)$

$$5187 = 6 \times 760 + 627$$

$$760 = 1 \times 627 + 133$$

$$627 = 4 \times 133 + 95$$

$$133 = 1 \times 95 + 38$$

$$95 = 2 \times 38 + 19$$

$$38 = 2 \times 19 + 0$$

=(169, BO)

=(180,39)

=(39, 13)

=(13.0)

Advanced Higher Maths Unit 3 1.4 Applying Algebraic Skills to Number Theory

Find
$$gcd$$
 of $gusu$ and 6873
 $gusu = [x 6873 + 2581]$
 $gusu = [x 6$

From (%)
$$29 = 870 - 1 \times 861$$

$$= 870 - 1 \times (1711 - 1 \times 870)$$

$$= 2 \times 870 - 1 \times 1711$$

$$= 2 \times (2581 - 1 \times 1711) - 1 \times 1711$$

$$= 2 \times 2581 - 3 \times 1711$$

$$= 2 \times 2581 - 3 \times (6873 - 2 \times 2581)$$

$$= 8 \times 2581 - 3 \times (873 - 2 \times 2581)$$

$$= 8 \times 2581 - 3 \times (873 - 2 \times 2581)$$

$$= 8 \times 9454 - 1 \times 6873$$

$$= 8 \times 9454 - 1 \times 6873$$

$$= 8 \times 9454 - 1 \times 6873$$

$$= 8 \times 9454 - 1 \times 6873$$