MORE CALCULUS APPLICATIONS

Optimisation

Differentiation can be used to analyse problems and help to find optimum values of systems as long as they can be modelled satisfactorily.

Example

The diagram shows an isosceles triangle inscribed in a circle radius r.

- (a) Show that the area of the triangle is given by $A = r^2 \sin \theta (1 + \cos \theta)$ where θ is the angle between the equal sides.
- (b) Find the maximum possible area of the triangle.

$$\nabla = \frac{1}{\sqrt{2}} =$$

Area =
$$\frac{1}{2}$$
 bcsin A
= $\frac{1}{2}$ x 2rcos $\frac{1}{2}$ 0 x 2rcos $\frac{1}{2}$ 0. sino
= $2r^{2}$ cos 2 $\frac{1}{2}$ 0 sino.
= 1^{2} sino (2 cos 2 $\frac{1}{2}$ 0)
= r^{2} sino (1+coso)
cos requirect. T
sino cos 20-2cos 2 0-1
1 2cos 2 0 - cos 2 0-1

2005 0 = COSO+1

Worksheet Ex 9

$$Q = \frac{T}{3}$$

COSO = ;

(2005 O -1)(0050+1

possible in s.

gives maximum area

When o=\$

cos coso =-1

Nature
$$\Theta$$
 O $\frac{\pi}{3}$ $\frac{\pi}{2}$
 A $\frac{dA}{dG} = \Gamma^2(\cos 20 + \cos 6)$ Γ^2 O $-\Gamma^2$

CfE Maths in Action p200 Exercise 11.4 Questions 1, 2, 4, 9

Related Rate Problems - Application of the Chain Rule

When a pebble is dropped into a pool of water a series of concentric circles is produced. Both the radius and area of each circle vary with time, and naturally the area of each circle varies with the radius. The *rate of change of radius* with respect to

time, $\frac{dr}{dt}$, rate of change of area with respect to time, $\frac{dA}{dt}$, rate of change of area with respect to radius, $\frac{dA}{dr}$, are all related and relationships may made using the chain rule:

e.g.
$$\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$$

Many such relationships can be found and are of value when solving problems involving rates.

Examples

1. A stone is dropped into a pool of water, creating circular ripples. Find the rate at which the area of the outer circle is increasing (in cm/s), at the point where the radius is 4 cm.

The rate at which the radius is changing is $\frac{3}{2}$ cm/s.

3

1.5 Applying Algebraic and Calculus Skills to Problems

2. A spherical balloon is blown up such that its volume increases at the constant rate of $8 \text{ cm}^3/\text{s}$.

At what rate is the radius increasing at the instant the radius is 4 cm?

Volume of sphere
$$V = \frac{1}{3}\pi r^3$$

Differentiate with time

 $\frac{dV}{dt} = \frac{1}{3}\pi \cdot 3r^2 \cdot \frac{dr}{dt}$
 $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$

We know $\frac{dV}{dt} = 8 r^2 4$
 $8 = 4x\pi x 4x dr$
 $\frac{dr}{dt} = \frac{8}{11x}4^3$
 $\frac{dr}{dt} = \frac{8}{8\pi}$

1.5 Applying Algebraic and Calculus Skills to Problems

Areas Between the Curve and the x-axis

Area =
$$\int_{a}^{b} f(x)dx$$

Note Always sketch graph first.

Areas below x-axis give negative answer.

Work out areas above and below x-axis separately.

Examples

1. Calculate the area bounded by $y = x^2 - 4x$ and the x-axis.

area =
$$-\int_{0}^{4} (x^{2} - |x|) dx$$

= $-\int_{0}^{4} (x^{2} - |x|) dx$
= $-\int_{0}^{4} (x^{2} - |x|) dx$

- 1.5 Applying Algebraic and Calculus Skills to Problems
 - 2. Find the area between the curve y = x(x 1)(x 2) and the x-axis.

$$+ x^3$$

 $ab x - axi x (x-1)(x-2) = 0$
 $x = 0, x = 1 \text{ and } x = 2$.

* since area are above and below the x-axis we must work them out separately.

$$\begin{aligned}
Q_1 &= \int_0^1 (\chi^2 - 3\chi^2 + 2\chi) d\chi \\
&= \int_0^1 \frac{\chi^4}{4} - \chi^3 + \chi^2 \int_0^1 d\chi \\
&= \left(\frac{1}{4} - 1 + 1\right) - 0 \\
&= \frac{1}{4}
\end{aligned}$$

$$a_{2} = -\int_{1}^{2} (\chi_{3} - 3\chi^{2} + 2\chi) d\chi$$

$$= -\left[\frac{\chi_{4}}{4} - \chi_{3} + \chi_{2} \right]^{2}$$

$$= -\left(\frac{1}{4} + 8t \right) + \left(\frac{1}{4} - 1 + 1 \right)$$

$$= \frac{1}{4}$$

Area Between Two Curves

Area =
$$\int_{a}^{b} (upper - lower) dx$$
$$= \int_{a}^{b} (g(x) - f(x)) dx$$

NB It doesn't matter if part of the area's below the x-axis for area between curros.

Example

Calculate the area between the curves $y = x^2 + 6$ and $y = 12 + 4x - x^2$.

Shorth. taz U +6 7

y= 12+ lx-x2 cut x-cas x2-lx-12=0 -x2 1 (x-6) (x+2)=0

X=6 X=-2

Points of intersection 1246 = 12+1/12-12

2x2-1xx-6=0

12-2x-3=0

(x-3) (x+1)=0 X=3, x=-1

area =
$$\int_{-1}^{3} (upper - lower) dx$$

= $\int_{-1}^{3} (12+lx - x^{2}) (x^{2}+6) dx$
= $\int_{-1}^{3} (6+lx - 2x^{2}) dx$

= \int_{1}^{3}(6+\lux-2x^2)\dx = \int_{1}^{3}(6+\lux-2x^2)\dx = \int_{1}^{3}(6+\lux-2x^2)\dx = \int_{1}^{3}(6+\lux-2x^2)\dx = \int_{1}^{3}(6+\lux-2x^2)\dx = \int_{1}^{3}(6+\lux-2x^2)\dx Maths in Action Book 1 Page 90 Exercise 10b Questions 4, 5, 8

= 213 square units.

Area Between the Curve and y-axis

note must write equalicity in the form x = something in ys.

area: Sa gly) dy a- integrate

limits for funding in

y's.

Area =
$$\int_{c}^{d} g(y) dy$$

Calculate the shaded area.

Here
$$y = x^2+1$$
 $x^2 = y-1$
 $x = \sqrt{y-1}$

C positive of since using only this part of the graph:

Oteo: $\int_{2}^{5} \sqrt{y-1} \, dy$ $= \int_{2}^{5} (y-1)^{\frac{1}{2}} \, dy$ $= \left[\frac{2}{3} (y-1)^{\frac{3}{2}} \right]_{2}^{5}$ $= \frac{2}{3} \cdot 4^{\frac{3}{2}} - \frac{2}{3} \cdot 1^{\frac{3}{2}}$ $= \frac{2}{3} \times 8 - \frac{2}{3}$ $= \frac{14}{3} \text{ square units.}$

LUB alocs to left of y-axis give negative value but correct magnitude.

1.5 Applying Algebraic and Calculus Skills to Problems

CfE Maths in Action p120 Exercise 7.10 Questions 6 to 9

Worksheet Q15 - 18

Volumes of Revolution

Volumes of revolution are formed when a curve is rotated about the x-axis (or y-axis). When a line is rotated a cone is formed.

Example

If
$$y = 3x$$
 and $b = 4$
 $V = \int_{0}^{4} \pi (3x)^{2} dx = 9\pi \int_{0}^{4} \frac{x^{3}}{3} \int_{0}^{4} dx = 9\pi \int_{0}^{4} \frac{64}{3} = 0$
 $= 192\pi \quad \text{Units}^{3} \quad 9$

1.5 Applying Algebraic and Calculus Skills to Problems

Find the volume of revolution obtained between x = 1 and x = 3 when the curve $y = x^2 + 1$ is rotated (i) about the x-axis

(ii) about the y-axis.

$$V = \int_{1}^{3} \pi (x^{2}+1)^{2} dx$$

$$= \pi \int_{1}^{3} (x^{4}+2x^{2}+1) dx$$

$$= \pi \left(\frac{x^{5}}{5} + \frac{2x^{3}}{3} + x \right)^{3}$$

$$= \pi \left(\left(\frac{3^{5}}{5} + \frac{2x^{3}}{3} + 3 \right) - \left(\frac{1}{5} + \frac{2}{5} + 1 \right) \right)$$

$$= \frac{1016}{15} \pi \quad \text{Units}^{3}$$

y=flx

Advanced Higher Maths: Unit 2 1.5 Applying Algebraic and Calculus Skills to Problems

(ii) About y-axis - limits for y equation in y's dependence in y's
$$X=1$$
 $Y=1^2+1=2$ $X=3$ $Y=3^2+1=10$
 $Y=\int_{2}^{10} tr((y-1)^{\frac{1}{2}})^2 dy$
 $=\pi \int_{2}^{10} (y-1) dy$
 $=\pi \int_{2}^{10} (y-1) dy$

Equation y= x2+1

x2-y-1

x= (y-1)=.

(x is positive => +1

CfE Maths in Action p122 Exercise 7.10 Questions 12 to 14

=TI((50-10)-(2-2))

= 40π units³

Worksheet Q8, 10, 12, 13, 14