Higher Maths Unit 1 Specimen NAB Number 2

1.	A line passes through the points (4, -3) and (-6, 2).
	7 public through the points (4, 23) and (-0, 2).
•	Find the equation of this line.

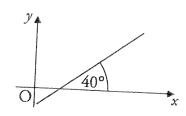
Marks

2

2. A line makes an angle of 40° with the positive direction of the x-axis, as shown in the diagram.

The scales on the axes are equal.

Find the gradient of the line giving your answer correct to 3 significant figures.



2

- 3. A line L has equation y = 4x + 1Write down the gradient of a line which is:
 - (a) parallel to L

1

(b) perpendicular to L

possessi)

Outcome 2

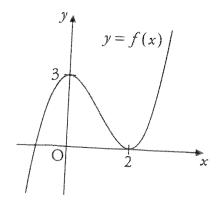
Outcome 1

4. The graph of y = f(x) is shown.

On separate diagrams sketch the graphs of

(a)
$$y = -f(x)$$

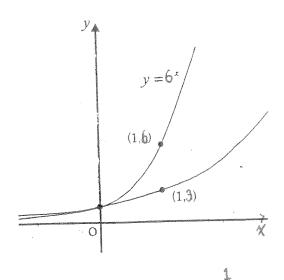
(b)
$$y = f(x + 4)$$



2

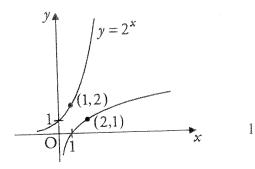
5. The graphs with equations $y = 6^x$ and $y = a^x$ are shown in the diagram.

If the graph of $y = a^x$ passes through the point (1, 3), find the value of a.



6. The graphs of $y = 2^x$ and its inverse function are shown in the diagram.

Write down the equation of the inverse function.



7. Functions g and h are defined on suitable domains by $f(x) = x^3$ and g(x) = 2x - 4.

Obtain an expression for f(g(x)).

2

Outcome 3

8. Given that $y = \frac{-3}{x^3}$, $x \neq 0$, find $\frac{dy}{dx}$.

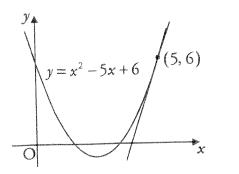
2

3

9. A sketch of the curve with equation $y = x^2 - 5x + 6$ is shown in the diagram.

A tangent has been drawn at the point (5, 6).

Find the gradient of the tangent.



10. A curve has equation $y = \frac{1}{3}x^3 - 4x^2 + 12x - 3$.

Using differentiation find the coordinates of the stationary points on this curve and determine their nature.

6

Outcome 4

11. A pond is treated weekly with a chemical to ensure that the number of bacteria is kept low. It is estimated that the chemical kills 68% of all bacteria. Between the weekly treatments, it is estimated that 600million new bacteria appear.

There are u_n million bacteria at the start of a particular week.

- (a) Write down a recurrence relation for u_{n+1} , the number of millions of bacteria at the start of the week.
- (b) (i) Find the limit of the sequence generated by this recurrence relation as $n \to \infty$.
 - (ii) Explain what this limit means in the context of this problem.

