## GCC Logs and Exponenetials

1. Evaluate $\log _{5} 2+\log _{5} 50-\log _{5} 4$.

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | C | NC | A28 | 2 | 2000 P1 Q9 |
|  | 1 | A/B | NC | A28 |  |  |
| - ${ }^{1}$ pd: use $\log _{a} x+\log _{a} y=\log _{a} x y$ <br> - ${ }^{2}$ pd: use $\log _{a} x-\log _{a} y=\log _{a} \frac{x}{y}$ <br> - ${ }^{3} \mathrm{pd}$ : use $\log _{a} a=1$ |  |  |  |  | - ${ }^{1} \log _{5} 100-\log _{5} 4$ <br> ${ }^{2}{ }^{2} \log _{5} 25$ <br> $\bullet^{3} 2$ |  |

2. (a) Given that $\log _{4} x=P$, show that $\log _{16} x=\frac{1}{2} P$.
(b) Solve $\log _{3} x+\log _{9} x=12$.

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| $(a)$ | 3 | A | CN | A28 | proof | 2010 P2 Q7 |
| $(b)$ | 3 | A | CN | A32 | $x=3^{8}(=6561)$ |  |

- ${ }^{1}$ ss: convert from log to exponential form
$\bullet^{2}$ ss: know to and convert back to $\log$ form
- 3 pd: process and complete
-4 ss: use appropriate strategy
$\bullet 5 \mathrm{pd}$ : start solving process
- ${ }^{6}$ pd: complete process via log to expo form
-1 $x=4^{P}$
- ${ }^{2} \log _{16} x=\log _{16} 4^{P}$
$\bullet^{3} \log _{16} x=P \times \log _{16} 4$ and complete
- ${ }^{4} \log _{3} x+\frac{1}{2} \log _{3} x=12$
- ${ }^{5} \log _{3} x=8$
- $6 x=3^{8}(=6561)$
[SQA]

3. Medical researchers studying the growth of a strain of bacteria observe that the number of bacteria, present after $t$ hours, is given by the formula $N(t)=40 e^{1.5 t}$.
(a) State the number of bacteria present at the start of the experiment.
(b) How many minutes will the bacteria take to double in number?

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| $(a)$ | 1 | C | CR | A6 |  | 1989 P1 Q20 |
| $(b)$ | 1 | C | CR | A30 |  |  |
| $(b)$ | 3 | A/B | CR | A30 |  |  |

$$
\begin{array}{ll}
\cdot{ }^{1} & 40 \\
\bullet^{2} & 40 e^{1.5 t}=80 \\
\cdot^{3} & 1 \cdot 5 t=\ln 2 \\
\cdot^{4} & t=0.46 \\
\cdot^{5} & 28 \text { minutes }
\end{array}
$$

4. A medical technician obtains this print-out of a wave form generated by an oscilloscope.
The technician knows that the equation of the first branch of the graph (for $0 \leq x \leq 3$ ) should be of the form $y=a e^{k x}$.
(a) Find the values of $a$ and $k$.

(b) Find the equation of the second branch of the curve (i.e. for $3 \leq x \leq 6$ ).

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| $(a)$ | 1 | C | CR | A2 |  | 1993 P1 Q15 |
| $(a)$ | 3 | A/B | CR | A30 |  |  |
| $(b)$ | 1 | A/B | CR | A7 |  |  |

$$
\begin{array}{ll}
\hline{ }^{1} & (0,5) \Rightarrow a=5 \\
\cdot^{2} & 20=5 e^{3 k} \\
\cdot^{3} & \text { e.g. } \ln 20=\ln 5+3 k \ln e \\
. & k=0.462 \quad\left(\text { Accept } \frac{1}{3} \ln 4\right) \\
\cdot^{5} & y=5 e^{k(x-3)}
\end{array}
$$

5. The diagram shows part of the graph with equation $y=3^{x}$ and the straight line with equation $y=42$. These graphs intersect at $P$.

Solve algebraically the equation $3^{x}=42$, and hence write down, correct to 3 decimal places, the coordinates of P .


| Part | Marks | Level | Calc. | Content |  | Answer |  |  | U3 OC3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | A/B | CR | A30 |  |  |  |  | 1994 P1 Q20 |
| 1 | use logs |  | OR | ${ }^{1}$ | use logs | OR | ${ }^{1}$ | use exp | onentials |
| $\bullet^{2}$ | $\ln 3^{x}=\ln 42$ |  |  | .$^{2}$ | $x=\log _{3} 42$ |  | ${ }^{2}$ | $\left(e^{1.0986}\right.$ | $=42$ |
|  | $x \ln 3=\ln 42$ |  |  |  | $x=\frac{\ln 42}{\ln 3}$ |  | $3^{3}$ | 1.0986 | $x=\ln 42$ |
| - ${ }^{4}$ | 3.402 |  |  |  | 3.402 |  |  | 3. 402 |  |

[SQA] 6. The amount $A$ grams of a radioactive substance at time $t$ minutes is given by $A=A_{0} e^{-k t}$ where $A_{0}$ is the initial amount of the substance and $k$ is a constant.
In 3 minutes, 10 grams of the substance Bismuth are reduced to 9 grams through radioactive decay.
(a) Find the value of $k$.

The half-life of a substance is the length of time in which half the substance decays.
(b) Find the half-life of Bismuth.

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (a) | 1 | C | CR | A30 |  | 1995 P1 Q18 |
| (a) | 2 | A/B | CR | A30, A34 |  |  |
| (b) | 2 | A/B | CR | A30 |  |  |
| $\begin{aligned} & \hline 0^{1} \\ & 0^{2} \\ & 0^{3} \\ & 0^{4} \\ & 0^{5} \end{aligned}$ | $9=10 e^{-}$ $-3 k=10$ 0.04 $e^{-k t}=0$ a correct | e.9 |  |  |  |  |

7. A mug of tea cools according to the law $T_{t}=T_{0} e^{-k t}$ where $T_{0}$ is the initial temperature and $T_{c}$ is the temperature after $t$ minutes. All temperatures are in ${ }^{\circ} \mathrm{C}$.
(a) A particular mug of tea cooled from boiling point $\left(100^{\circ} \mathrm{C}\right)$ to $75^{\circ} \mathrm{C}$ in a quarter of an hour. Calculate the value of $k$.
(b) By how many degrees will the temperature of this tea fall in the next quarter of an hour?

8. The diagram shows part of the graph of $y=k e^{0.5 x}$.
(a) Find the value of $k$.
(b) The line with equation $x=1$ intersects the graph at $P$. Find the coordinates of the point $P$.


| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| $(a)$ | 1 | C | CR | A30, A34 |  | 1991 P1 Q4 |
| $(b)$ | 2 | C | CR | A6 |  |  |

- $3=k e^{0} \Rightarrow k=3$
-2 $y=3 e^{0.5}$ or equivalent
- ${ }^{3}(1,4 \cdot 9)$
[SQA]

10. 

Part of the graph of $y=5 \log _{10}(2 x+10)$ is shown in the diagram. This graph crosses the $x$-axis at the point $A$ and the straight line $y=8$ at the point B .

Find algebraically the $x$-coordinates of A and $B$.


4

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
|  | 4 | A/B | CR | A31 |  | 1997 P1 Q17 |

. $x_{A}=-4 \cdot 5$

- ${ }^{2} \quad 5 \log _{10}(2 x+10)=8$
- $2 x+10=10^{\frac{8}{3}}$
${ }^{4} \quad x=14 \cdot 9$
[SQA] 11. Find the $x$-coordinate of the point where the graph of the curve with equation $y=\log _{3}(x-2)+1$ intersects the $x$-axis.

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | C | CN | A31 |  | 2002 P2 Q7 |
|  | 1 | A/B | CN | A32 | $x=2 \frac{1}{3}$ |  |
| - ${ }^{1}$ ss: know to isolate log term <br> ${ }^{2}$ pd: express log equation as exp. equ. <br> ${ }^{3}$ pd: process |  |  |  |  | ${ }^{1} \log _{3}(x-2)=-1$ <br> - $2 x-2=3^{-1}$ <br> $\bullet^{3} x=2 \frac{1}{3}$ |  |

[SQA] 12. Given $x=\log _{5} 3+\log _{5} 4$, find algebraically the value of $x$.

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | C | NC | A31 |  | 1998 P1 Q19 |
|  | 3 | A/B | NC | A28 |  |  |
| $.^{1} \quad x=\log _{5} 12$ |  |  |  |  |  |  |
|  | $5^{x}=12$ |  |  |  |  |  |
|  | $\log 5^{x}=\log 12$ |  |  |  |  |  |
| . ${ }^{4}$ | $\frac{\log _{80} 12}{\log _{10} 5}$ |  | $\frac{8,12}{0_{9} 5}$ | $\frac{\log 12}{\log 5}$ |  |  |

[SQA]
13. The diagram shows a sketch of the graph of $y=f(x)$ where $f(x)=a \log _{2}(x-b)$.
Find the values of $a$ and $b$.


| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | A/B | CN | A31, A2 |  | 1995 P1 Q19 |

$$
\begin{aligned}
& \text { ? } \quad b=2 \\
& Q^{2} \quad 3=a \log _{2} 2 \text { stated or implied } \\
& \text { or }(4-\mathrm{b})^{a}=8 \\
& \bullet^{3} \quad a=3
\end{aligned}
$$

[SQA] 14. The diagram shows part of the graph of $y=\log _{b}(x+a)$. Determine the values of $a$ and $b$.


| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
|  | 3 | A/B | CN | A31, A2 |  | 1999 P1 Q15 |

$$
\begin{array}{lll}
\bullet^{1} & a=-2 & \text { OR } \\
\bullet^{2} & 1=\log _{b}(7-2) & \\
\bullet^{3} & b=5 & \\
\bullet^{2} & 7+a=b \text { and } a+3=b^{0} \\
& & \bullet^{3} \\
& a=-2, b=5
\end{array}
$$

[SQA] 15. The diagram shows a sketch of part of the graph of $y=\log _{5} x$.
(a) Make a copy of the graph of $y=\log _{5} x$.

On your copy, sketch the graph of $y=\log _{5} x+1$.
Find the coordinates of the point where it crosses the $x$-axis.


| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| $(a)$ | 2 | C | NC | A32 |  | 1994 P1 Q16 |
| $(a)$ | 1 | $\mathrm{~A} / \mathrm{B}$ | NC | A 3 |  |  |
| $(b)$ | 2 | $\mathrm{~A} / \mathrm{B}$ | NC | A28, A3 |  |  |


| $0^{1}$ | sketch of new function |
| :--- | :--- | :--- | :--- | :--- |
| $0^{2}$ | $\log _{5} x+1=0$ |

[SQA] 16.
(a) (i) Show that $x=1$ is a root of $x^{3}+8 x^{2}+11 x-20=0$.
(ii) Hence factorise $x^{3}+8 x^{2}+11 x-20$ fully.
(b) Solve $\log _{2}(x+3)+\log _{2}\left(x^{2}+5 x-4\right)=3$.

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| $(a)$ | 4 | C | CN | A21 | $(x-1)(x+4)(x+5)$ | 2009 P2 Q3 |
| $(b)$ | 5 | B | CN | A32 | $x=1$ |  |

- ${ }^{1}$ ss: know and use $f(a)=0 \Leftrightarrow a$ is a root
- 2 ic: start to find quadratic factor
${ }^{3}$ ic: complete quadratic factor
${ }^{4} \mathrm{pd}$ : factorise fully
- 5 ss: use log laws
${ }^{6}$ ss: know to \& convert to exponential form
$\bullet$ ic: write cubic in standard form
${ }^{8}$ pd: solve cubic
- ${ }^{9}$ ic: interpret valid solution
- $1 \quad f(1)=1+8+11-20=0$ so $x=1$ is a root
$\bullet^{2}(x-1)\left(x^{2} \ldots\right.$
- $3(x-1)\left(x^{2}+9 x+20\right)$
- ${ }^{4}(x-1)(x+4)(x+5)$
- ${ }^{5} \log _{2}\left((x+3)\left(x^{2}+5 x-4\right)\right)$
${ }^{6}(x+3)\left(x^{2}+5 x-4\right)=2^{3}$
${ }^{7} x^{3}+8 x^{2}+11 x-20=0$
- $8 x=1$ or $x=-4$ or $x=-5$
- ${ }^{9} x=1$ only

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
|  | 3 | C | NC | A32, A28, A31 | $x=81$ | 2001 P1 Q8 |

- ${ }^{1} \mathrm{pd}$ : use log-to-index rule
- ${ }^{1} \log _{x} 6^{4}-\log _{x} 4^{2}$
${ }^{2}$ pd: use log-to-division rule
$\bullet^{3}$ ic: interpret base for $\log _{x} a=1$ and
- ${ }^{2} \log _{x} \frac{6^{4}}{4^{2}}$ simplify
$\bullet^{3}$ all processing leading to $x=81$

18. When the switch in this circuit was closed, the computer printed out a graph of the current flowing ( $I$ microamps) against the time ( $t$ seconds).This graph is shown in fig. 1 .

figure 1


In order to determine the equation of the graph shown in figure 1, values of $\log _{e} I$ were plotted against $\log _{e} t$ and the best fitting straight line was drawn as shown in figure 2.

(a) Find the equation of the line shown in figure 2 in terms of $\log _{e} I$ and $\log _{e} t$.
(b) Hence or otherwise show that $I$ and $t$ satisfy a relationship of the form
$I=k t^{r}$ stating the values of $k$ and $r$.

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| $(a)$ | 3 | C | CR | G2, G3 |  | 1993 P2 Q10 |
| $(b)$ | 4 | A/B | CR | A33 |  |  |

$$
\begin{array}{ll}
\text { (a) } .^{1} & m=-\frac{4}{5} \text { stated or implied } \\
& \bullet^{2} \\
& y=m x+4 \text { stated or implied } \\
\bullet^{3} & \log _{e} I=-\frac{4}{5} \log _{e} t+4
\end{array}
$$

(b).$^{4} \log _{e} e^{-\frac{4}{5}}$
$.5 \log _{e} 54.6$
. ${ }^{6} \log _{e} 54.6 t^{-\frac{4}{5}}$
$.^{7} \quad I=54.6 t^{-0.8}$
19. The results of an experiment give rise to the graph shown.
(a) Write down the equation of the line in terms of $P$ and $Q$.


It is given that $P=\log _{e} p$ and $Q=\log _{e} q$.
(b) Show that $p$ and $q$ satisfy a relationship of the form $p=a q^{b}$, stating the values of $a$ and $b$.

| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| $(a)$ | 2 | A/B | CR | G3 | $P=0 \cdot 6 Q+1 \cdot 8$ | 2000 P2 Q11 |
| $(b)$ | 4 | A/B | CR | A33 | $a=6 \cdot 05, b=0 \cdot 6$ |  |

${ }^{1}$ ic: interpret gradient
${ }^{2}{ }^{2}$ ic: state equ. of line

- ${ }^{3}$ ic: interpret straight line
${ }^{4}$ ss: know how to deal with $x$ of $x \log y$
$\bullet{ }^{5}$ ss: know how to express number as $\log$
- ${ }^{6}$ ic: interpret sum of two logs
- $1 \quad m=\frac{1.8}{3}=0.6$
- ${ }^{2} P=0 \cdot 6 \mathrm{Q}+1.8$

Method 1

- ${ }^{3} \log _{e} p=0.6 \log _{e} q+1.8$
${ }^{4} \log _{e} q^{0.6}$
${ }^{\cdot}{ }^{5} \log _{e} 6 \cdot 05$
- ${ }^{6} p=6.05 q^{0.6}$

Method 2
$\ln p=\ln a q^{b}$

- ${ }^{3} \ln p=\ln a+b \ln q$
${ }^{4} \ln p=0.6 \ln q+1.8$ stated or implied by $\bullet^{5}$ or $\bullet^{6}$
${ }^{-5} \ln a=1.8$
- $6 a=6 \cdot 05, b=0 \cdot 6$

20. The graph illustrates the law $y=k x^{n}$.

If the straight line passes through $A(0 \cdot 5,0)$ and $B(0,1)$, find the values of $k$ and $n$.


| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
|  | 4 | A/B | NC | A33 | $y=5 x^{-2}$ | 2002 P1 Q11 |
|  |  |  |  |  |  |  |
| ic: interpret graph |  |  |  |  | $\bullet^{1} \log _{5} y=-2\left(\log _{5} x\right)+1$ |  |
| $\bullet^{2}$ ss: use log laws | $\bullet^{2} \log _{5} y=\log _{5} x^{-2}+\ldots$ |  |  |  |  |  |
| $\bullet^{3}$ ss: use log laws | $\bullet^{3} \ldots+\log _{5} 5$ |  |  |  |  |  |
| $\bullet^{4}$ pd: solve log equation | $\bullet^{4} y=5 x^{-2}$ |  |  |  |  |  |

21. Variables $x$ and $y$ are related by the equation
$y=k x^{n}$.
The graph of $\log _{2} y$ against $\log _{2} x$ is a $\log _{2} y$ straight line through the points $(0,5)$ and $(4,7)$, as shown in the diagram.
Find the values of $k$ and $n$.


| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
|  | 5 | A | CN | A33 | $k=32, n=\frac{1}{2}$ | 2011 P2 Q5 |

${ }^{1}$ ss: introduce logarithms to $y=k x^{n}$
${ }^{-2}$ ic: use laws of logarithms
${ }^{3}$ ic: interpret intercept

- 4 ic: solve for $k$
$\bullet 5$ ic: interpret gradient
- $\log _{2} y=\log _{2} k x^{n}$
- ${ }^{2} \log _{2} y=n \log _{2} x+\log _{2} k$
- ${ }^{3} \log _{2} k=5$ or $\log _{2} y=5$
- $k=32$ or $2^{5}$
- $5 n=\frac{1}{2}$

22. As shown in the diagram, a set of experimental results gives a straight line graph when $\log _{10} y$ is plotted against $\log _{10} y$. The straight line passes through $(0,1)$ and has a gradient of 2 .

Express $y$ in terms of $x$.


| Part | Marks | Level | Calc. | Content | Answer | U3 OC3 |
| :---: | :---: | :---: | :---: | :--- | :--- | :---: |
|  | 2 | C | CN | G3 |  | 1990 P1 Q14 |
|  | 4 | A/B | CN | A33, A34 |  |  |


| $\bullet$ use $y=m x+c$ | $e^{4}$ | $\log _{10} y=\log _{10} x^{2}+1$ |
| :--- | :--- | :--- |
| $e^{2}$ | $\log _{10} y=2 \log _{10} x+1$ | $\bullet^{5}$ |
| $\log _{10} y=\log _{10} 10 x^{2}$ |  |  |
| $e^{3} \log _{10} y=2 \log _{10} x+\log _{10} 10$ | $\bullet^{6} y=10 x^{2}$ |  |

[END OF QUESTIONS]

