GCC Logs and Exponenetials

1. Evaluate $\log _{5} 2+\log _{5} 50-\log _{5} 4$.
[SQA]
2. (a) Given that $\log _{4} x=P$, show that $\log _{16} x=\frac{1}{2} P$.
(b) Solve $\log _{3} x+\log _{9} x=12$.
3. Medical researchers studying the growth of a strain of bacteria observe that the number of bacteria, present after t hours, is given by the formula $N(t)=40 e^{1.5 t}$.
(a) State the number of bacteria present at the start of the experiment.
(b) How many minutes will the bacteria take to double in number?
4. A medical technician obtains this print-out of a wave form generated by an oscilloscope. The technician knows that the equation of the first branch of the graph (for $0 \leq x \leq 3$) should be of the form $y=a e^{k x}$.
(a) Find the values of a and k.

(b) Find the equation of the second branch of the curve (i.e. for $3 \leq x \leq 6$).
5. The diagram shows part of the graph with equation $y=3^{x}$ and the straight line with equation $y=42$. These graphs intersect at P.

Solve algebraically the equation $3^{x}=42$, and hence write down, correct to 3 decimal places, the coordinates of P.

6. The amount A grams of a radioactive substance at time t minutes is given by $A=A_{0} e^{-k t}$ where A_{0} is the initial amount of the substance and k is a constant. In 3 minutes, 10 grams of the substance Bismuth are reduced to 9 grams through radioactive decay.
(a) Find the value of k.

The half-life of a substance is the length of time in which half the substance decays.
(b) Find the half-life of Bismuth.
10. Part of the graph of $y=5 \log _{10}(2 x+10)$ is shown in the diagram. This graph crosses the x-axis at the point A and the straight line $y=8$ at the point B.

Find algebraically the x-coordinates of A and B.

[SQA] 11. Find the x-coordinate of the point where the graph of the curve with equation $y=\log _{3}(x-2)+1$ intersects the x-axis.
12. Given $x=\log _{5} 3+\log _{5} 4$, find algebraically the value of x.
13. The diagram shows a sketch of the graph of $y=f(x)$ where $f(x)=a \log _{2}(x-b)$. Find the values of a and b.

14. The diagram shows part of the graph of $y=\log _{b}(x+a)$. Determine the values of a and b.

16.
(a) (i) Show that $x=1$ is a root of $x^{3}+8 x^{2}+11 x-20=0$.
(ii) Hence factorise $x^{3}+8 x^{2}+11 x-20$ fully.
(b) Solve $\log _{2}(x+3)+\log _{2}\left(x^{2}+5 x-4\right)=3$.
[SQA] 17. Find x if $4 \log _{x} 6-2 \log _{x} 4=1$.
18. When the switch in this circuit was closed, the computer printed out a graph of the current flowing (I microamps) against the time (t seconds).This graph is shown in fig. 1 .

figure 1

In order to determine the equation of the graph shown in figure 1, values of $\log _{e} I$ were plotted against $\log _{e} t$ and the best fitting straight line was drawn as shown in figure 2.

(a) Find the equation of the line shown in figure 2 in terms of $\log _{e} I$ and $\log _{e} t$.
(b) Hence or otherwise show that I and t satisfy a relationship of the form $I=k t^{r}$ stating the values of k and r.
[SQA] 19. The results of an experiment give rise to the graph shown.
(a) Write down the equation of the line in terms of P and Q.

It is given that $P=\log _{e} p$ and $Q=\log _{e} q$.
(b) Show that p and q satisfy a relationship of the form $p=a q^{b}$, stating the values of a and b.
20. The graph illustrates the law $y=k x^{n}$.

If the straight line passes through $A(0 \cdot 5,0)$ and $B(0,1)$, find the values of k and n.

21. Variables x and y are related by the equation
$y=k x^{n}$.
The graph of $\log _{2} y$ against $\log _{2} x$ is a $\log _{2} y$ straight line through the points $(0,5)$ and $(4,7)$, as shown in the diagram.
Find the values of k and n.

