AH Differentiation Homework (3)

1. A curve has equation $x y+y^{2}=2$.
(a) Use implicit differentiation to find $\frac{d y}{d x}$ in terms of x and y.
(b) Hence find an equation of the tangent to the curve at the point $(1,1)$.
2. Given the equation $2 y^{2}-2 x y-4 y+x^{2}=0$ of a curve, obtain the x-coordinate of each point at which the curve has a horizontal tangent.
3. The equation $y^{3}+3 x y=3 x^{2}-5$ defines a curve passing through the point $A(2,1)$. Obtain an equation for the tangent to the curve at A.
4. (a) Given $f(x)=x(1+x)^{10}$, obtain $f^{\prime}(x)$ and simplify your answer.
(b) Given $\mathrm{y}=3^{x}$, use logarithmic differentiation to obtain $\frac{d y}{d x}$ in terms of x.
5. (a) Given that $f(x)=\sqrt{x} e^{-x}, x \geq 0$, obtain and simplify $f^{\prime}(x)$.
(b) Given $y=(x+1)^{2}(x+2)^{-4}$ and $x>0$, use logarithmic differentiation to show that $\frac{d y}{d x}$ can be expressed in the form $\left(\frac{a}{x+1}+\frac{b}{x+2}\right) y$, stating the values of the constants a and b.
6. A curve is defined by the equations

$$
x=5 \cos \theta, \quad y=5 \sin \theta, \quad(0 \leq \theta \leq 2 \pi)
$$

Use parametric differentiation to find $\frac{d y}{d x}$ in terms of θ.
Find the equation of the tangent to the curve at the point where $\theta=\frac{\pi}{4}$.
7. A curve is defined by the parametric equations

$$
x=t^{2}+t-1, \quad y=2 t^{2}-t+2
$$

for all t. Show that the point $A(-1,5)$ lies on the curve and obtain an equation of the tangent to the curve at the point A.
8. Part of a journey an object made was observed.

The displacement, s metres, of the object travelling in a straight line at time t seconds is given by :-

$$
s=\frac{t^{3}}{3}+t^{2}-8 t+10
$$

(a) How far from the origin was the object when the observation was started ?
(b) At what time was the object stationary ?
(c) Comment on the motion of the object when $t=5$ secs.
(d) Does the object ever reach a constant velocity or decelerate during its journey ? Justify your answer.
9. A bird drops a berry that falls along the path $y=-x^{2}+10$ (metres above the ground). If $x=\frac{1}{2} t$ metres, with t in seconds, what is the velocity of the berry when it hits the ground? (Remember to give magnitude and direction).
10.If $=\frac{\sin x}{x^{2}}$, prove that $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+\left(x^{2}+2\right) y=0$.
11.Determine the stationary points of $y=x^{3} e^{-x}$. Use the second derivative to help determine the nature of the stationary points.

