AH Differentiation Homework (3)

- 1. A curve has equation $xy + y^2 = 2$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y. (3)
 - (b) Hence find an equation of the tangent to the curve at the point (1,1). (2)
- 2. Given the equation $2y^2 2xy 4y + x^2 = 0$ of a curve, obtain the *x*-coordinate of each point at which the curve has a horizontal tangent. (4)
- 3. The equation $y^3 + 3xy = 3x^2 5$ defines a curve passing through the point A(2,1). Obtain an equation for the tangent to the curve at A. (4)
- 4. (a) Given $f(x) = x(1+x)^{10}$, obtain f'(x) and simplify your answer. (3)

(b) Given
$$y = 3^x$$
, use logarithmic differentiation to obtain $\frac{dy}{dx}$ in terms of x . (3)

5. (a) Given that
$$f(x) = \sqrt{x} e^{-x}$$
, $x \ge 0$, obtain and simplify $f'(x)$. (4)

- (b) Given $y = (x + 1)^2 (x + 2)^{-4}$ and x > 0, use logarithmic differentiation to show that $\frac{dy}{dx}$ can be expressed in the form $\left(\frac{a}{x+1} + \frac{b}{x+2}\right)y$, stating the values of the constants a and b. (3)
- 6. A curve is defined by the equations

$$x = 5\cos\theta$$
, $y = 5\sin\theta$, $(0 \le \theta \le 2\pi)$.

Use parametric differentiation to find $\frac{dy}{dx}$ in terms of θ . (2)

Find the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{4}$. (3)

7. A curve is defined by the parametric equations

$$x = t^2 + t - 1$$
, $y = 2t^2 - t + 2$

for all t. Show that the point A(-1,5) lies on the curve and obtain an equation of

the tangent to the curve at the point A.

(6)

8. Part of a journey an object made was observed.

The displacement, s metres, of the object travelling in a straight line at time t seconds

is given by :-

$$s = \frac{t^3}{3} + t^2 - 8t + 10$$

- (a) How far from the origin was the object when the observation was started ?
- (b) At what time was the object stationary?
- (c) Comment on the motion of the object when t = 5 secs.
- (d) Does the object ever reach a constant velocity or decelerate during its journey ? Justify your answer.
- 9. A bird drops a berry that falls along the path $y = -x^2 + 10$ (*metres above the ground*).

If $x = \frac{1}{2}t$ metres, with t in seconds, what is the velocity of the berry when it hits the ground?

(Remember to give magnitude and direction).

10.If
$$=\frac{\sin x}{x^2}$$
, prove that $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + (x^2 + 2)y = 0$.

11. Determine the stationary points of $y = x^3 e^{-x}$. Use the second derivative to help determine the nature of the stationary points.