AH Differentiation Homework (2)

1. (a) Write down the definitions of $\sec x, \operatorname{cosec} x$ and $\cot x$.
(b) Use either the chain rule or quotient rule to differentiate $\sec x, \operatorname{cosec} x$ and $\cot x$.
(c) Hence find the derivatives of :-
(i) $\cot 3 x$
(ii) $\operatorname{cosec}^{2} x$
(iii) $2 x^{2} \sec x$
(3)
2. Differentiate the following functions with respect to x, simplifying your answers where possible.
(a) $\quad h(x)=-\ln (\cos 5 x)$
(b) $\quad y=\frac{\ln (x+3)}{x+3}, x>-3$
3. Differentiate with respect to x
(a) $y=x^{2} \tan ^{-1}(\sqrt{x-1})$
(4)
(b) $y=\tan ^{-1} e^{3 x}$
(c) $\quad y=\sin ^{-1}\left(x^{4}\right)$
4. Differentiate with respect to x
(a) $y=4 \tan ^{2} 3 x$
(b) $y=e^{\cot 2 x}, 0<x<\frac{\pi}{2}$
(3)
5. (a) Given $f(x)=\cos ^{2} x e^{\tan x},-\frac{\pi}{2}<x<\frac{\pi}{2}$, obtain $f^{\prime}(x)$ and evaluate $f^{\prime}\left(\frac{\pi}{4}\right)$
(b) Differentiate $g(x)=\frac{\tan ^{-1} 2 x}{1+4 x^{2}}$ with respect to x.
6. Given $f(x)=\ln \left(\cos ^{-1} 2 x\right)$, find $f^{\prime}(x)$.
