CFE AH Maths Homework (17)

(i) Find the point of intersection of the line

$$\frac{x-3}{4} = \frac{y-2}{-1} = \frac{z+1}{2}$$

and the plane with equation 2x + y - z = 4.

- Given the matrix $A = \begin{pmatrix} t+4 & 3t \\ 3 & 5 \end{pmatrix}$.
 - (a) Find A^{-1} in terms of t when A is non-singular.
 - (b) Write down the value of t such that A is singular.
 - (c) Given that the transpose of A is $\begin{pmatrix} 6 & 3 \\ 6 & 5 \end{pmatrix}$, find t.
- (3) (a) Find an equation of the plane π_1 through the points A(1, 1, 1), B(2, -1, 1) and C(0, 3, 3).
 - (b) The plane π_2 has equation x + 3y z = 2. Given that the point (0, a, b) lies on both the planes π_1 and π_2 , find the values of a and b. Hence find an equation of the line of intersection of the planes π_1 and π_2 .

3

1

1

3

4

3

- (c) Find the size of the acute angle between the planes π_1 and π_2 .
- The matrix A is such that $A^2 = 4A 3I$ where I is the corresponding identity matrix. Find integers p and q such that

$$A^4 = pA + qI.$$

(5) (a) Find an equation of the plane π₁ containing the points A(1, 0, 3), B(0, 2, -1) and C(1, 1, 0).
Calculate the size of the acute angle between π₁ and the plane π₂ with equation x + y - z = 0.
(b) Find the point of intersection of plane π₂ and the line

$$\frac{x-11}{4} = \frac{y-15}{5} = \frac{z-12}{2}.$$