Questions from AH Paper 2003

- **A10.** Define $I_n = \int_0^1 x^n e^{-x} dx$ for $n \ge 1$.
 - Use integration by parts to obtain the value of $I_1 = \int_0^1 v e^{-v} dv$.

3

Similarly, show that $I_n = nI_{n-1} - e^{-1}$ for $n \ge 2$.

4

(c) Evaluate I_{ν} 3

A11. The volume V(t) of a cell at time t changes according to the law

$$\frac{dV}{dt} = V(10 - V)$$
 for $0 < V < 10$.

Show that

$$\frac{1}{10}\ln V - \frac{1}{10}\ln(10 - V) = t + C$$

for some constant C.

Given that V(0) = 5, show that

$$\Gamma(t) = \frac{10e^{10t}}{1 + e^{10t}}.$$

3

Obtain the limiting value of V(t) as $t \to \infty$

2

The matrix A is such that $A^2 = 4A - 3I$ where I is the corresponding identity B2. matrix. Find integers p and q such that

$$A^{+} = pA + qI.$$

4

Obtain the Maclaurin series for $f(x) = \sin^2 x$ up to the term in x^4 . B4. Hence write down a series for $\cos^2 x$ up to the term in x^+ .

1

Prove by induction that for all natural numbers $n \ge 1$ B5.

$$\sum_{i=1}^{n} 3(r^2 - r) = (n - 1)n(n + 1).$$

4

(b) Hence evaluate $\sum_{i=1}^{10} 3(r^2 - r)$.

2

B6. Solve the differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^x,$$

given that y = 2 and $\frac{dy}{dx} = 1$, when y = 0.

10