Queshus from AH Paper 2003

Given $f(x) = x(1+x)^{10}$, obtain f'(x) and simplify your answer. A1. (a)

- 3
- Given $y = 3^x$, use logarithmic differentiation to obtain $\frac{dy}{dx}$ in terms of x. (b)
- 3

3

Given that $u_k = 11 - 2k$, $(k \ge 1)$, obtain a formula for $S_n = \sum u_k$. A2. Find the values of *n* for which $S_n = 21$.

- 2
- The equation $y^3 + 3xy = 3x^2 5$ defines a curve passing through the point A3. A (2, 1). Obtain an equation for the tangent to the curve at A.
- 4

A4. Identify the locus in the complex plane given by |z+i|=2.

3

Use the substitution $x = 1 + \sin \theta$ to evaluate $\int_0^{\pi/2} \frac{\cos \theta}{(1 + \sin \theta)^3} d\theta.$ A5.

- 5
- A6. Use elementary row operations to reduce the following system of equations to upper triangular form

$$x + y + 3z =$$

$$3x + ay + z =$$

$$3x + ay + z = 1$$
$$x + y + z = -1.$$

2

Hence express x, y and z in terms of the parameter a.

2

Explain what happens when a = 3.

2

A7.

- The diagram shows the shape of the graph of $y = \frac{X}{1+e^2}$. Obtain the stationary points of the graph.

Sketch the graph of $y = \left| \frac{y}{1 + y^2} \right|$ and identify its three critical points.

3

Given that $p(n) = n^2 + n$, where *n* is a positive integer, consider the statements: p(n) is always even p(n) is always a multiple of 3. For each statement, prove it if it is true or, otherwise, disprove it. 4 Given that $\pi c = \cos \theta + i \sin \theta$, show that $\frac{1}{\pi c} = \cos \theta - i \sin \theta$. A9. Use de Moivre's theorem to prove $\tau c^k + \tau c^{-k} = 2\cos k\theta$, where k is a natural 1 Expand $(w + w^{-1})^4$ by the binomial theorem and hence show that 3 $\cos^{+}\theta = \frac{1}{8}\cos \theta + \frac{1}{2}\cos \theta + \frac{3}{8}.$ 5

A8.