X100/13/01

NATIONAL QUALIFICATIONS 1.00 PM - 4.00 PM 2014

TUESDAY, 6 MAY

MATHEMATICS ADVANCED HIGHER

Read carefully

- Calculators may be used in this paper.
- 2 Candidates should answer all questions.
- 3 Full credit will be given only where the solution contains appropriate working.

1. (a) Given

$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

obtain f'(x) and simplify your answer.

3

(b) Differentiate $y = \tan^{-1}(3x^2)$.

3

Write down and simplify the general term in the expression $\left(\frac{2}{x} + \frac{1}{4x^2}\right)^{10}$.

Hence, or otherwise, obtain the term in $\frac{1}{\sqrt{13}}$.

5

3. Use Gaussian elimination on the system of equations below to give an expression for z in terms of λ .

$$x + y + z = 2$$

$$4x + 3y - \lambda z = 4$$

$$5x + 6y + 8z = 11$$

For what values of λ does this system have a solution?

Determine the solution to this system of equations when $\lambda = 2$.

6

4. Given $x = \ln(1 + t^2)$, $y = \ln(1 + 2t^2)$ use parametric differentiation to find $\frac{dy}{dx}$ in terms of t.

Three vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are given by u, v and w where

$$u = 5i + 13j$$
, $v = 2i + j + 3k$, $w = i + 4j - k$.

Calculate $u.(v \times w)$.

1

3

Interpret your result geometrically.

6. Given $e^v = x^3 \cos^2 x$, x > 0, show that

$$\frac{dy}{dx} = \frac{a}{x} + b \tan x$$
, for some constants a and b.

State the values of *a* and *b*.

3

7. Given A is the matrix $\begin{pmatrix} 2 & a \\ 0 & 1 \end{pmatrix}$,

prove by induction that

$$A^{n} = \begin{pmatrix} 2^{n} & a(2^{n} - 1) \\ 0 & 1 \end{pmatrix} , n \ge 1.$$

Find the solution y = f(x) to the differential equation

$$4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0$$

given that y = 4 and $\frac{dy}{dx} = 3$ when x = 0.

6

Give the first three non-zero terms of the Maclaurin series for $\cos 3x$.

Write down the first four terms of the Maclaurin series for e^{2x} .

2 1

Hence, or otherwise, determine the Maclaurin series for $e^{2x}\cos 3x$

up to, and including, the term in x^3 .

3

A semi-circle with centre (1, 0) and radius 2, lies on the x-axis as shown.

Find the volume of the solid of revolution formed when the shaded region is rotated completely about the x-axis.

5

[Turn over

11. The function f(x) is defined for all $x \ge 0$.

The graph of y = f(x) intersects the y-axis at (0, c), where 0 < c < 5.

The graph of the function and its asymptote, y = x - 5, are shown below.

(a) Copy the above diagram.

On the same diagram, sketch the graph of $y = f^{-1}(x)$.

Clearly show any points of intersection and any asymptotes.

(b) What is the equation of the asymptote of the graph of y = f(x + 2)?

- (c) Why does your diagram show that the equation x = f(f(x)) has at least one solution?
- 12. Use the substitution $x = \tan \theta$ to determine the exact value of

$$\int_0^1 \frac{dx}{\left(1+x^2\right)^{\frac{3}{2}}} \ .$$

13. The fuel efficiency, F, in km per litre, of a vehicle varies with its speed, skm per hour, and for a particular vehicle the relationship is thought to be

$$F = 15 + e^{x}(\sin x - \cos x - \sqrt{2})$$
, where $x = \frac{\pi(s-40)}{80}$,

for speeds in the range $40 \le s \le 120 \,\mathrm{km}$ per hour.

What is the greatest and least efficiency over the range and at what speeds do they occur?

4

1

						2	2										Mark
14.	(<i>a</i>)	Given the series	1	+ 1	- +	r^2 +	r^{3}	+		,	write	down	the	sum	to	infinity	
		when $ r < 1$.														<i>-</i>	

Hence obtain an infinite geometric series for $\frac{1}{2-3r}$.

For what values of r is this series valid?

4

(b) Express $\frac{1}{3r^2 - 5r + 2}$ in partial fractions.

Hence, or otherwise, determine the first three terms of an infinite series

for
$$\frac{1}{3r^2 - 5r + 2}$$
.

For what values of r does the series converge?

6

15. (a) Use integration by parts to obtain an expression for

$$\int e^x \cos x \ dx.$$

4

(b) Similarly, given $I_n = \int e^x \cos nx \, dx$ where $n \neq 0$,

obtain an expression for I_n .

4

(c) Hence evaluate $\int_0^{\frac{\pi}{2}} e^x \cos 8x \ dx$.

2

16. (a) Express -1 as a complex number in polar form and hence determine the solutions to the equation $z^4 + 1 = 0$.

3

(b) Write down the four solutions to the equation $z^4 - 1 = 0$.

2

(c) Plot the solutions of both equations on an Argand diagram.

1

(d) Show that the solutions of $z^4 + 1 = 0$ and the solutions of $z^4 - 1 = 0$ are also solutions of the equation $z^8 - 1 = 0$.

2

(e) Hence identify all the solutions to the equation

$$z^6 + z^4 + z^2 + 1 = 0$$
.

2

 $[END\ OF\ QUESTION\ PAPER]$