X100/13/01

NATIONAL QUALIFICATIONS 1.00 PM - 4.00 PM 2013

WEDNESDAY, 22 MAY

MATHEMATICS ADVANCED HIGHER

Read carefully

- Calculators may be used in this paper.
- 2 Candidates should answer all questions.
- Full credit will be given only where the solution contains appropriate working. 3

Answer all the questions

- Marks
- 1. Write down the binomial expansion of $\left(3x \frac{2}{x^2}\right)^4$ and simplify your answer.
 - 2

2. Differentiate $f(x) = e^{\cos x} \sin^2 x$.

3

- 3. Matrices A and B are defined by $A = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix}$.
 - (a) Find A^2 .

1

(b) Find the value of p for which A^2 is singular.

2

(c) Find the values of p and x if B = 3A'.

2

4. The velocity, v, of a particle P at time t is given by

$$v = e^{3t} + 2e^t.$$

(a) Find the acceleration of P at time t.

2

(b) Find the distance covered by P between t = 0 and $t = \ln 3$.

- 3
- 5. Use the Euclidean algorithm to obtain the greatest common divisor of 1204 and 833, expressing it in the form 1204a + 833b, where a and b are integers.
- 4

6. Integrate $\frac{\sec^2 3x}{1 + \tan 3x}$ with respect to x.

4

7. Given that $z = 1 - \sqrt{3}i$, write down \overline{z} and express \overline{z}^2 in polar form.

8. Use integration by parts to obtain $\int x^2 \cos 3x \, dx$.

5

9. Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} (4r^3 + 3r^2 + r) = n(n+1)^3$$

6

10. Describe the loci in the complex plane given by:

(a)
$$|z+i|=1$$
;

Marks

(b)
$$|z-1|=|z+5|$$
.

3

11. A curve has equation

$$x^2 + 4xy + y^2 + 11 = 0.$$

Find the values of
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at the point (-2, 3).

6

12. Let n be a natural number.

For each of the following statements, decide whether it is true or false. If true, give a proof; if false, give a counterexample.

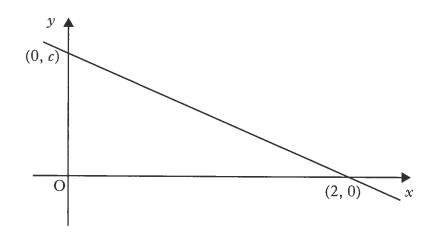
A If n is a multiple of 9 then so is n^2 .

B If n^2 is a multiple of 9 then so is n.

4

2

13. Part of the straight line graph of a function f(x) is shown.



- (a) Sketch the graph of $f^{-1}(x)$, showing points of intersection with the axes.
- (b) State the value of k for which f(x) + k is an odd function.
- (c) Find the value of h for which |f(x+h)| is an even function.

[Turn over for Questions 14 to 17 on Page four

3

3

14. Solve the differential equation

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 4e^{3x}$$
, given that $y = 1$ and $\frac{dy}{dx} = -1$ when $x = 0$.

- 15. (a) Find an equation of the plane π_1 , through the points A(0, -1, 3), B(1, 0, 3) and C(0, 0, 5).
 - (b) π₂ is the plane through A with normal in the direction -j + k.
 Find an equation of the plane π₂.
 - (c) Determine the acute angle between planes π_1 and π_2 .
- 16. In an environment without enough resources to support a population greater than 1000, the population P(t) at time t is governed by Verhurst's law

$$\frac{dP}{dt} = P(1000 - P).$$

Show that

$$\ln \frac{P}{1000 - P} = 1000t + C \quad \text{for some constant } C.$$

Hence show that

$$P(t) = \frac{1000K}{K + e^{-1000t}} \qquad \text{for some constant } K.$$

Given that P(0) = 200, determine at what time t, P(t) = 900.

17. Write down the sums to infinity of the geometric series

$$1 + x + x^2 + x^3 + \dots$$

and

$$1 - x + x^2 - x^3 + \dots$$

valid for |x| < 1.

Assuming that it is permitted to integrate an infinite series term by term, show that, for |x| < 1,

$$\ln\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots\right).$$

Show how this series can be used to evaluate ln 2.

Hence determine the value of ln 2 correct to 3 decimal places.

[END OF QUESTION PAPER]

[X100/13/01]