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1. Calculators may be used in this paper.
2. Candidates should answer all questions.
3. Full credit will be given only where the solution contains appropriate working.
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Marks
Answer all the questions.

4
1. Express the binomial expansion of (x——z ) in the form ax* +bx* +¢ +%—+—%
x x° x
for integers a, b, ¢, d and e. 4
2.  Obtain the derivative of each of the following functions:
(a) f(x)=exp (sin 2x); 3

() y=4¥*D,

3. Show that = 3 + 37 is a root of the equation 2> — 18z + 108 = 0 and obtain the
remaining roots of the equation. 4

. 25> —9x—6 . . .
4. Express = ————— in partial fractions. 3
x(x° —x—6)

Given that

6 7.2 _
2x 2—9x 6 dx=In",

4+ x(x" —x—0)

determine values for the integers m and ». 3

5. Matrices A and B are defined by

1 0 -1 x+2 x-2 x+3
A=10 1 -1 R B= -4 4 2
01 2 2 -2 3

(a) Find the product AB.
(b) Obtain the determinants of A and of AB.

Hence, or otherwise, obtain an expression for det B.

6. Find the Maclaurin series for cos x as far as the term in x*.
Deduce the Maclaurin series for f(x) =%cos 2x as far as the term in x".

Hence write down the first three non-zero terms of the series for f(3x).

[X100/701] Page two



Marks

7.  Use the Euclidean algorithm to find integers p and g such that 599p + 53¢ =1. 4
2
8.  Obtain the general solution of the equation d—¥+ 6%’--}- 9y = ¢**. 6
dx x
9. Show that ) (4—6r)=n—3n". 2
r=1
2g
Hence write down a formula for 2(4— 67). 1
r=1
2g
Show that D, (4—67)=q—9¢". 2
r=q+1
3
10.  Use the substitution u = 1 + x? to obtain JIJTI dx. 5
0(1+x%)
3/2
A solid is formed by rotating the curve y = m between x =0 and x = 1
X
through 360 ° about the x-axis. Write down the volume of this solid. 1

11.  Given that |z —-2| = |z +1|, where 2 =x + iy, show that ax + by + ¢ = 0 for suitable
values of a, b and c. 3

Indicate on an Argand diagram the locus of complex numbers z which satisfy
|z-2|=|z+1]. 1

12. Prove by induction that for a > 0,

1+a)"21+na

for all positive integers 7. 5

13. A curve is defined by the parametric equations x = cos 2t, y =sin2¢, 0 < t < %

(@) Use parametric differentiation to find Z—y

X
Hence find the equation of the tangent when ¢t = % 5
d* 2 2
() Obtain an expression for —32} and hence show that sin 2td—3—) + L2 k,
dx doc? dx
where & is an integer. State the value of k. 5

[Turn over for Questions 14 to 16 on Page four
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14. A garden centre advertises young plants to be used as hedging.

After planting, the growth G metres (ie the increase in height) after ¢ years is
modelled by the differential equation

dG _ 25k-G

dt 25

where & is a constant and G =0 when ¢t = 0.
(a) Express G in terms of ¢ and k.

() Given that a plant grows 0-6 metres by the end of 5 years, find the value of
k correct to 3 decimal places.

(¢) On the plant labels it states that the expected growth after 10 years is
approximately 1 metre. Is this claim justified?

(d) Given that the initial height of the plants was 0-3m, what is the likely
long-term height of the plants?

15. Lines L, and L, are given by the parametric equations
Li:x=2+sy=-s5,2=2-s L,:x=-1-2t,y=1t,2=2+3t.

(a) Show that L, and L, do not intersect.

() The line L, passes through the point P(1, 1, 3) and its direction is
3 ;
perpendicular to the directions of both L, and L,. Obtain parametric
equations for L.

(¢) Find the coordinates of the point Q where L; and L, intersect and verify
that P lies on L;.

(d) PQ is the shortest distance between the lines L, and L,. Calculate PQ.

16.

(@) The diagram shows part of the graph of f(x) = tan™' 2x and its asymptotes.
State the equations of these asymptotes.

(b) Use integration by parts to find the area between f(x), the x-axis and the

lines x =0, x = %

(c) Sketch the graph of y = |f(x)| and calculate the area between this graph, the
x-axis and the lines x = —%, x=7.

[END OF QUESTION PAPER]
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Advanced Higher Mathematics 2007

1. 4 2\2 3 4 1 for powers
( - 3) - Xt 4x3(_3) . 6x2(——) + 4x(_3) ; (_3) P
X X X X X 1 for coeffs
4 2 32 16
=x -8 +24 - = + — 2E1
X X = &
2. (a) f(x) = exp(sin2x)
f(x) = 2 cos2x exp(sin 2x) M1,2E1
(®) y = 4%
Iny = n(4%*"Y) = (* + 1) In4 M1
14y _ vima 1
y dx
D oy ina. 40D 1
dx
Alternative:
y = 4(x2+1)
4 = eln4 1
y = eln4(x2+l)
dy In 402+ 1)
— = In42xe 1,1
dx
3. (3 + 3i)® = 27 + 81i + 81i% + 27i®* = 54 + 54i. Thus

(3 + 3i)° - 18(3 + 3i) + 108

—54 + 54i — 54 — 54i + 108 = 0
Since 3 + 3iisaroot,3 — 3iis aroot.
These give a factor (z — (3 + 31))(z— (3-3i)) = (z-3)*+9 =22 - 62+ 18. 1
2 - 18z + 108 = (£ - 6z + 18)(z + 6)
The remaining roots are 3 — 3i and —6. 1
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4. 2% -9% -6  2x*-9x -6 é+ B . C y
x(x2-x-6) x(x+2(x-3) x

x+2 x-3
22 -9 -6 = A(x + 2)(x = 3) + Bx(x - 3) + Cx(x + 2)

x=0 = -6A=-6 = A=1

x=-2 = 10B=20 = B =2

x=3 = 15C =-15 = C = -1 2E1
2x* - 9% - 6 1 2 1
= — + -
x(x2 - x - 6) x x+2 x-3

ax(x®-x-6)

+ —
X X+ 2 x-3

J-62x2—9x—6 J-;(l 2 1 )dx

= [lnx+2x+2) - Inx - 3)]¢ 2E1
[ x(x + 2)2]6
= (mEiEeL
x-3) 14

6 x 64 4 x 36
—In

= In

3 1
= ln2 x 64 = ln§ 1
4 x 36 9
5. (a) 1 0 -1\/[x+2 x-2 x+3
AB=1{0 1 -1 -4 4 2
0 1 2 2 -2 3
X X X
={-6 6 -1 2E1
0 0 8
(b) detA =1x(2+1)-0-1x0=23 1
detAB = x(48 — 0) — x(~-48 — 0) + x(0 - 0) = 96x 1
Since detAB = detA detB
detp = d&t4B _ %x _ o 1
det A 3
6. F) = f0) + xf(0) + £ (0) + 5" (0) +... 1
cosx = 1 - % + 4 — .. 1
1 (2x)* (2x)*
= (1 - ==L 4 =2 1
f& =3 2 o4
=12+ 5 - 1
f(Bx) = 4 - (3x)* + $(3x*
=43 - 0% + 27t - ... 1
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Alternative for third and fourth marks:

f(x) = 3cos2x f0) =3
f(x) = —sin2x f© =0
f7(x) = -2 cos2x F7(0) = -2
f7(x) = 4sin2x 7@ =0
fll”(x) — 8 Coszx fIIII(O) — 8
1
In general
FO) = fO +FOx +fOF + ...
Hence
) =3 +0+ (=25 +0+8%+ ...
=i-x+5- .. 1
7. 599 = 53 x 11 + 16
53 =16 x3+5
16 = 5x3+1 1
1 =16-5x%x3
=16 - (53 - 16 x 3) x 3
=16 x 10 - 53 x 3
= (599 - 53 x 11) x 10 — 53 x 3
= 599 x 10 - 53 x 113 2E1
Hence 599p + 53g = 1whenp = 10andg = -113. 1
8. dy dy 2
— + 6=+ 9y =
a2 Cax T T
Auxiliary equation: m*> + 6m + 9 = 0 1
So(m + 3% =0 givingm = -3,
Complementary function:
y = (A + Bx)e™
For the Particular Integral try y = ke
2
S Dl oope DY e 1
dx dx?
4ke™ + 12ke™ + 9ke™ = ¢ = 25k = 1 1
Hence the General Solution is:
y = (A + Bx)e ™™ + Fe* 1
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n

2

(4-6r)=4Y-6>r 1M
r=1 r=1 r=1
=4n - 3n(n + 1) 1
=n - 3
2
> @ - 6r) =29 - 12¢° 1
r=1
2¢q 2¢q q
Y (4-6r)=Y@E-6r)- > (4-6n 1M
r=g+1 r=1 r=1
= (29 - 12¢°) - (g - 3¢") 1
=q - 9q2.
Arithmetic Series could be used, so, for the first two marks:
a=-2,d=-6=35 =4{2-=2)+@®n- 16} 1
= -2n-31" +3n =n - 3’ 1
10. 1 +x*=u = 2xdx = du 1
x=0=u=1; x=1=>u=2 1
! x? 2w -1
T dx = 1
J'o (1 + x?)* dx -[1 2ut du
2
=5 -[1 (u? - u)du
- 2
= o+ s 1
2L 2 3 1
N A T
2Ll g 241 2L 27 3
_ 1L l] _ L 1
2L 12 el 24
The volume of revolution is given by V = f: my*dx. So in this case
1 3
V = Jt'[ o dx = i. 1
o (1 + x)* 24
Integration by parts could be used for marks three, four and five.
_ 2
2y - 1 1 4 u ]
L o du = E_(u - l)fu du — J‘l.—_gdu 1 1
1u-1 u? :|2
_ ! L 1
21 -3u? (=6) 11
LA
C2l-24 24 2 6
1,11 1
24 12 24
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11. |z - 2] = |z + i
| (x = 2) + iyl =[x+ (& + 1)i] 1
(x—2)2+yz=x2+(y+1)2 1
—4dx+4 =2y+1
4x + 2y -3 =10 1
3i
1
3
4
12. Considern = 1,LHS= (1 + a),RHS= 1 + asotrueforn = 1. 1
Assume that (I + a)f = 1 + ka and consider (1 + a)**'. 1
A+af*' =1 +ad+af 1
> (1 + a)(1 + ka) 1
=1+a+ka+ kd
= 1+(k+1)a+ka2
> 1+(k+1)asinceka2>0 1
as required. So since true forn = 1, by mathematical induction statement
istrue foralln > 1.
13. (@
d
X = cos2t = dx = —-2sin2t; y = sin2t = D _ 2 cos2t 1,1
dt dt
2 2
a Lt = — cot2t 1
dx -2 sin 2t
Whent=’g‘,x=cos%=:}—i;y=sin%=$;%=—1. 1
1 1
Equationis: y - NG = —(x - ﬁ) iex +y = V2. 1
(b)
d
&y 4@ .
dx? dx
2 cosec?2t
=" = 2E1
-2 sin 2t
-1
T sin32s
2 dy\> i ~ cos2r\’
sin 2td—y + (—X) = .sm 2 +( ?OS ) 1
dx? dx sin32¢ sin 2t
_ 2
_ 1 + cos” 2t - -1 1
sin? 2¢
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Alternative for last three marks of (b)

2 2 2
- 2
sin 2t£1—y + (ﬂ) = — cosec’2t + ?OS ! 1
dx? dx sin 2t
-1 cos22t
= + — 1
sin?2t  sin?2t
_ 2
_ 1 + cos” 2t _ 1 1
sin? 2t
14. 4G _ 2k —G
(@) dr 25
J- dG _ 1 at 1
25k - G 25
t
- In(25% - G) = =+ C 1
n ) = 53
Whent = 0,G = 0,s0C = — In25k 1
25k — G = 25ke™"®
G = 25k(1 - &) 1
(b) Whent = 5,G = 0.6. Therefore
0.6 = 25k(1 - €%
k=06/(25(1 - ) = 0:132
(c) Whent = 10
G = 33(1 - &%) 1
= 1.09
The claim seems to be justified, 1
(d) Ast — oo,G — 25k = 3.3 metres 1
so the limit is 3.6 metres. 1
Alternative using an Integrating Factor:
@ dG 25k - G
d 25
G + G =k 1
dt 25
IF = o34 = %
d 125 125
— G) =k
o (e"PG) = ke
er/sz =k “‘er/zs dt
= k(25¢"7) + C’
G = 25k + C'e™"® 1
Whent = 0,G = 0,s0C’ = -25k 1
G = 25k(1 - &) 1
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15.

(a)

(b)

Equating the x-coordinates: 2 + s = -1 - 2t = s + 2t = =3 (1)
Equating the y-coordinates: —s = t = s = —¢ 1
Substitutingin (1): -t + 2t = -3 => t = -3 = s = 3. 1
Putting s = 3in L, gives (5, -3, —1)and ¢t = -3in L,, (5, -3, -7).

As the z coordinates differ, L; and L, do not intersect. 1
Directions of L, and L, are: i — j — kand -2i + j + 3k. The vector

product of these gives the direction of L.

i j k
(i-j-K)x(-2i+j+3k)=| 1 -1 -1|=-2i-j-k 1M,1
-2 1 3

Equation of L;:
r

i+j+3k+(2i-j-Kku
A-2wi+{1-wj+ 3 -uwk
Hence Lzis givenbyx = 1 - 2u,y = 1 —u,z = 3 - u. 1

(¢c) Solving the x and y coordinates of L; and L,:
-1 -2t =1-2uandt =1 - u
> -1=3-4u =>u=1andt =0 1
The point of intersection, Q, is (—1, 0, 2)since2+3t=2and 3 —u = 2. 1
Liisx=2+s,y=-5,7=2-5s. Whenx = 1,s = —1 and hence
y = landz = 3,i.e. Plieson L,. 1
(d PO =22+ 12+ 12 = 6. 1
16. @ tan~! 2x has horizontal asymptotes at y = :t%. 1,1
1/2
(b) Area = Io tan™' 2x dx ' 1
172
= jo (tan™'2x) x 1dx 1
_ 12
— -1 —
= _tan 2le.dx -[1 e .xdx]o
_ 1 1/2
= |xtan™'2x - —J 8x dx]
B 471 + 4x° 0
— 1 1/2
= {xtan"' 2x — : In(1 + 4x2)]0 2E1
Lt - -1—ln2] - [0 - 0]
L2 4
T 1
= —~ =1In2 1
g 4"
(c) S ace ’ g
-\"'\-\._\_\_\-- | /_’ >
2E1
1/2| ld _2J.1/2ta o d
I-uz fx) |dx = . n 2xdx
7 1
= — - —=1In2 1
4 2"

[END OF MARKING INSTRUCTIONS]
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