X100/701

NATIONAL QUALIFICATIONS 2007 TUESDAY, 15 MAY 1.00 PM = 4.00 PM

MATHEMATICS ADVANCED HIGHER

Read carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer all questions.
- 3. Full credit will be given only where the solution contains appropriate working.

Answer all the questions.

- Express the binomial expansion of $\left(x-\frac{2}{x}\right)^4$ in the form $ax^4+bx^2+c+\frac{d}{x^2}+\frac{e}{x^4}$ 1. for integers a, b, c, d and e.

- 2. Obtain the derivative of each of the following functions:
 - (a) $f(x) = \exp(\sin 2x)$;

3

(b) $v = 4^{(x^2 + 1)}$.

3

Show that z = 3 + 3i is a root of the equation $z^3 - 18z + 108 = 0$ and obtain the 3. remaining roots of the equation.

Express $\frac{2x^2-9x-6}{x(x^2-x-6)}$ in partial fractions.

3

Given that

$$\int_{4}^{6} \frac{2x^{2} - 9x - 6}{x(x^{2} - x - 6)} dx = \ln \frac{m}{n},$$

determine values for the integers m and n.

3

5. Matrices A and B are defined by

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} x+2 & x-2 & x+3 \\ -4 & 4 & 2 \\ 2 & -2 & 3 \end{pmatrix}.$$

(a) Find the product AB. 2

Obtain the determinants of A and of AB.

2

Hence, or otherwise, obtain an expression for $\det B$.

1

Find the Maclaurin series for $\cos x$ as far as the term in x^4 . 6.

2

Deduce the Maclaurin series for $f(x) = \frac{1}{2}\cos 2x$ as far as the term in x^4 .

2

Hence write down the first three non-zero terms of the series for f(3x).

1

5

- 7. Use the Euclidean algorithm to find integers p and q such that 599p + 53q = 1.
- 8. Obtain the general solution of the equation $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = e^{2x}.$
- 9. Show that $\sum_{r=1}^{n} (4-6r) = n-3n^2$.
 - Hence write down a formula for $\sum_{r=1}^{2q} (4-6r)$.
 - Show that $\sum_{r=q+1}^{2q} (4-6r) = q-9q^2$.
- 10. Use the substitution $u = 1 + x^2$ to obtain $\int_0^1 \frac{x^3}{(1+x^2)^4} dx$.

A solid is formed by rotating the curve $y = \frac{x^{3/2}}{(1+x^2)^2}$ between x = 0 and x = 1 through 360° about the x-axis. Write down the volume of this solid.

- 11. Given that |z-2| = |z+i|, where z = x + iy, show that ax + by + c = 0 for suitable values of a, b and c.
 3 Indicate on an Argand diagram the locus of complex numbers z which satisfy |z-2| = |z+i|.
 1
- 12. Prove by induction that for a > 0,

$$(1+a)^n \ge 1 + na$$

for all positive integers n.

13. A curve is defined by the parametric equations $x = \cos 2t$, $y = \sin 2t$, $0 < t < \frac{\pi}{2}$

A curve is defined by the parametric equations $x = \cos 2t$, $y = \sin 2t$, $0 < t < \frac{\pi}{2}$.

(a) Use parametric differentiation to find $\frac{dy}{dx}$.

4) Use parametric differentiation to find $\frac{dy}{dx}$.

Hence find the equation of the tangent when $t = \frac{\pi}{8}$.

(b) Obtain an expression for $\frac{d^2y}{dx^2}$ and hence show that $\sin 2t \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = k$, where k is an integer. State the value of k.

[Turn over for Questions 14 to 16 on Page four

14. A garden centre advertises young plants to be used as hedging.

After planting, the growth G metres (ie the increase in height) after t years is modelled by the differential equation

$$\frac{dG}{dt} = \frac{25k - G}{25}$$

where k is a constant and G = 0 when t = 0.

(a) Express G in terms of t and k.

4

(b) Given that a plant grows 0.6 metres by the end of 5 years, find the value of k correct to 3 decimal places.

2

(c) On the plant labels it states that the expected growth after 10 years is approximately 1 metre. Is this claim justified?

2

(d) Given that the initial height of the plants was $0.3 \,\mathrm{m}$, what is the likely long-term height of the plants?

2

15. Lines L_1 and L_2 are given by the parametric equations

$$L_1: x = 2 + s, y = -s, z = 2 - s$$
 $L_2: x = -1 - 2t, y = t, z = 2 + 3t.$

3

(a) Show that L_1 and L_2 do not intersect.

3

(b) The line L_3 passes through the point P(1, 1, 3) and its direction is perpendicular to the directions of both L_1 and L_2 . Obtain parametric equations for L_3 .

(c) Find the coordinates of the point Q where L_3 and L_2 intersect and verify that P lies on L_1 .

3

(d) PQ is the shortest distance between the lines L_1 and L_2 . Calculate PQ.

1

16.

(a) The diagram shows part of the graph of $f(x) = \tan^{-1} 2x$ and its asymptotes. State the equations of these asymptotes.

_

2

(b) Use integration by parts to find the area between f(x), the x-axis and the lines x = 0, $x = \frac{1}{2}$.

5

(c) Sketch the graph of y = |f(x)| and calculate the area between this graph, the x-axis and the lines $x = -\frac{1}{2}$, $x = \frac{1}{2}$.

3

[END OF QUESTION PAPER]

Advanced Higher Mathematics 2007

1.
$$\left(x - \frac{2}{x}\right)^4 = x^4 + 4x^3 \left(-\frac{2}{x}\right) + 6x^2 \left(-\frac{2}{x}\right)^2 + 4x \left(-\frac{2}{x}\right)^3 + \left(-\frac{2}{x}\right)^4$$
 1 for powers 1 for coeffs 2E1

 $f(x) = \exp(\sin 2x)$ (a) 2. $f'(x) = 2 \cos 2x \exp(\sin 2x)$ M1,2E1

(b)
$$y = 4^{(x^{2}+1)}$$

$$\ln y = \ln (4^{(x^{2}+1)}) = (x^{2}+1) \ln 4$$

$$\frac{1}{y} \frac{dy}{dx} = 2x \ln 4$$

$$\frac{dy}{dx} = 2x \ln 4 \cdot 4^{(x^{2}+1)}$$
1

Alternative:

$$y = 4^{(x^{2}+1)}$$

$$4 = e^{\ln 4}$$

$$y = e^{\ln 4(x^{2}+1)}$$

$$\frac{dy}{dx} = \ln 4 2x e^{\ln 4(x^{2}+1)}$$
1,1

3.
$$(3 + 3i)^3 = 27 + 81i + 81i^2 + 27i^3 = -54 + 54i$$
. Thus

$$(3 + 3i)^3 - 18(3 + 3i) + 108 =$$

$$-54 + 54i - 54 - 54i + 108 = 0$$

Since 3 + 3i is a root, 3 - 3i is a root.

1 These give a factor $(z - (3 + 3i))(z - (3 - 3i)) = (z - 3)^2 + 9 = z^2 - 6z + 18$. 1

$$z^3 - 18z + 108 = (z^2 - 6z + 18)(z + 6)$$

The remaining roots are 3 - 3i and -6. 1

4.
$$\frac{2x^2 - 9x - 6}{x(x^2 - x - 6)} = \frac{2x^2 - 9x - 6}{x(x + 2)(x - 3)} = \frac{A}{x} + \frac{B}{x + 2} + \frac{C}{x - 3}$$

$$2x^2 - 9x - 6 = A(x + 2)(x - 3) + Bx(x - 3) + Cx(x + 2)$$

$$x = 0 \implies -6A = -6 \implies A = 1$$

$$x = -2 \implies 10B = 20 \implies B = 2$$

$$x = 3 \implies 15C = -15 \implies C = -1$$

$$\frac{2x^2 - 9x - 6}{x(x^2 - x - 6)} = \frac{1}{x} + \frac{2}{x + 2} - \frac{1}{x - 3}$$

$$\int_{4}^{6} \frac{2x^2 - 9x - 6}{x(x^2 - x - 6)} = \int_{4}^{6} \left(\frac{1}{x} + \frac{2}{x + 2} - \frac{1}{x - 3}\right) dx$$

$$= [\ln x + 2 \ln(x + 2) - \ln(x - 3)]_{4}^{6}$$

$$= \ln \frac{6 \times 64}{4 \times 36} - \ln \frac{4 \times 36}{1}$$

$$= \ln \frac{1}{4} \times \frac{64}{3} - \ln \frac{4}{4} \times \frac{36}{3}$$

$$= \ln \frac{2 \times 64}{4 \times 36} = \ln \frac{8}{9}$$
1

5. (a)
$$AB = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x + 2 & x - 2 & x + 3 \\ 2 & -2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} x & x & x \\ -6 & 6 & -1 \\ 0 & 0 & 8 \end{pmatrix}$$
(b)
$$det A = 1 \times (2 + 1) - 0 - 1 \times 0 = 3$$

$$det AB = x(48 - 0) - x(-48 - 0) + x(0 - 0) = 96x$$
1

Since $\det AB = \det A \det B$

$$\det B = \frac{\det AB}{\det AA} = \frac{96x}{3} = 32x$$
1

6.
$$f(x) = f'(0) + xf'(0) + \frac{2}{3}f'''(0) + \frac{2}{3}f'''(0) + \dots$$

$$\cos x = 1 - \frac{2}{3}^2 + \frac{2}{3}^4 - \dots$$
1

$$f(x) = \frac{1}{2} \left(1 - \frac{(2x)^2}{2} + \frac{(2x)^4}{4} - \dots\right)$$

$$= \frac{1}{2} - x^2 + \frac{5}{3}^4 - \dots$$
1

 $= \frac{1}{2} - 9x^2 + 27x^4 - \dots$

 $f(3x) = \frac{1}{2} - (3x)^2 + \frac{1}{3}(3x)^4$

Alternative for third and fourth marks:

$$f(x) = \frac{1}{2}\cos 2x$$
 $f(0) = \frac{1}{2}$
 $f'(x) = -\sin 2x$ $f'(0) = 0$
 $f'''(x) = -2\cos 2x$ $f'''(0) = -2$
 $f''''(x) = 4\sin 2x$ $f''''(0) = 0$
 $f''''(x) = 8\cos 2x$ $f''''(0) = 8$

In general

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2} + \dots$$

Hence

$$f(x) = \frac{1}{2} + 0 + (-2)\frac{x^2}{2} + 0 + 8\frac{x^4}{24} + \dots$$
$$= \frac{1}{2} - x^2 + \frac{x^4}{3} - \dots$$

 $7. 599 = 53 \times 11 + 16$

$$53 = 16 \times 3 + 5$$

$$16 = 5 \times 3 + 1$$

1

1

$$1 = 16 - 5 \times 3$$

$$= 16 - (53 - 16 \times 3) \times 3$$

$$= 16 \times 10 - 53 \times 3$$

$$= (599 - 53 \times 11) \times 10 - 53 \times 3$$

$$= 599 \times 10 - 53 \times 113$$
2E1

Hence 599p + 53q = 1 when p = 10 and q = -113.

1

8.
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = e^{2x}$$

Auxiliary equation: $m^2 + 6m + 9 = 0$

1

So
$$(m + 3)^2 = 0$$
 giving $m = -3$.

Complementary function:

$$y = (A + Bx)e^{-3x}$$

For the Particular Integral try $y = ke^{2x}$

1

$$\Rightarrow \frac{dy}{dx} = 2ke^{2x}; \frac{d^2y}{dx^2} = 4ke^{2x}$$

$$4ke^{2x} + 12ke^{2x} + 9ke^{2x} = e^{2x} \Rightarrow 25k = 1$$

Hence the General Solution is:

$$y = (A + Bx)e^{-3x} + \frac{1}{25}e^{2x}$$

$$\sum_{r=1}^{n} (4 - 6r) = 4 \sum_{r=1}^{n} -6 \sum_{r=1}^{n} r$$

$$= 4n - 3n(n+1)$$

$$= n - 3n^{2}$$
1M

$$\sum_{r=1}^{2q} (4 - 6r) = 2q - 12q^2$$

$$\sum_{r=q+1}^{2q} (4 - 6r) = \sum_{r=1}^{2q} (4 - 6r) - \sum_{r=1}^{q} (4 - 6r)$$

$$= (2q - 12q^{2}) - (q - 3q^{2})$$

$$= q - 9q^{2}.$$
1M

Arithmetic Series could be used, so, for the first two marks:

$$a = -2, d = -6 \implies S_n = \frac{n}{2} \{ 2(-2) + (n-1)(-6) \}$$
 1
= $-2n - 3n^2 + 3n = n - 3n^2$ 1

10.

$$1 + x^2 = u \implies 2x \, dx = du$$

$$x = 0 \Rightarrow u = 1;$$
 $x = 1 \Rightarrow u = 2$

$$\int_{0}^{1} \frac{x^{3}}{(1+x^{2})^{4}} dx = \int_{1}^{2} \frac{(u-1)}{2u^{4}} du$$

$$= \frac{1}{2} \int_{1}^{2} (u^{-3} - u^{-4}) du$$

$$= \frac{1}{2} \left[-\frac{1}{2}u^{-2} + \frac{1}{3}u^{-3} \right]_{1}^{2}$$

$$= \frac{1}{2} \left[-\frac{1}{8} + \frac{1}{24} \right] - \frac{1}{2} \left[-\frac{1}{2} + \frac{1}{3} \right]$$

$$= \frac{1}{2} \left[-\frac{1}{12} + \frac{1}{6} \right] = \frac{1}{24}$$
1

The volume of revolution is given by $V = \int_a^b \pi y^2 dx$. So in this case

$$V = \pi \int_0^1 \frac{x^3}{(1+x)^4} dx = \frac{\pi}{24}.$$

Integration by parts could be used for marks three, four and five.

$$\int_{1}^{2} \frac{u - 1}{2u^{4}} du = \frac{1}{2} \left[(u - 1) \int u^{-4} du - \int 1 \cdot \frac{u^{-3}}{-3} du \right]_{1}^{2}$$

$$= \frac{1}{2} \left[\frac{u - 1}{-3u^{3}} + \frac{u^{-2}}{(-6)} \right]_{1}^{2}$$

$$= \frac{1}{2} \left[\frac{1}{-24} - \frac{1}{24} \right] - \frac{1}{2} \left[0 - \frac{1}{6} \right]$$

$$= -\frac{1}{24} + \frac{1}{12} = \frac{1}{24}$$
1

$$|z-2|=|z+i|$$

$$|(x-2) + iy| = |x + (y + 1)i|$$

$$(x-2)^2 + y^2 = x^2 + (y+1)^2$$

$$-4x + 4 = 2y + 1$$

$$4x + 2y - 3 = 0$$

1

1

12. Consider
$$n = 1$$
, LHS = $(1 + a)$, RHS = $1 + a$ so true for $n = 1$.

Assume that $(1 + a)^k \ge 1 + ka$ and consider $(1 + a)^{k+1}$.

$$(1 + a)^{k+1} = (1 + a)(1 + a)^k$$

$$\geqslant (1 + a)(1 + ka)$$

$$= 1 + a + ka + ka^2$$

$$= 1 + (k + 1)a + ka^2$$

$$> 1 + (k + 1)a \text{ since } ka^2 > 0$$

as required. So since true for n = 1, by mathematical induction statement is true for all $n \ge 1$.

13. (a)

$$x = \cos 2t \implies \frac{dx}{dt} = -2 \sin 2t; \ y = \sin 2t \implies \frac{dy}{dt} = 2 \cos 2t$$
 1,1

$$\frac{dy}{dx} = \frac{2\cos 2t}{-2\sin 2t} = -\cot 2t$$

When
$$t = \frac{\pi}{8}$$
, $x = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$; $y = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$; $\frac{dy}{dx} = -1$.

Equation is:
$$y - \frac{1}{\sqrt{2}} = -(x - \frac{1}{\sqrt{2}})$$
 i.e. $x + y = \sqrt{2}$.

(b)

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$
 1M

$$= \frac{2 \operatorname{cosec}^2 2t}{-2 \sin 2t}$$
 2E1

$$= \frac{-1}{\sin^3 2t}$$

$$\sin 2t \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \frac{-\sin 2t}{\sin^3 2t} + \left(\frac{-\cos 2t}{\sin 2t}\right)^2$$

$$= \frac{-1 + \cos^2 2t}{\sin^2 2t} = -1$$

Alternative for last three marks of (b) $\sin 2t \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = -\csc^2 2t + \left(\frac{-\cos 2t}{\sin 2t}\right)^2$ 1 $=\frac{-1}{\sin^2 2t} + \frac{\cos^2 2t}{\sin^2 2t}$ 1 $= \frac{-1 + \cos^2 2t}{\sin^2 2t} = -1$ 1 $\frac{dG}{dt} = \frac{25k - G}{25}$ 14. (a) $\int \frac{dG}{25k - G} = \int \frac{1}{25} dt$ 1 $-\ln\left(25k-G\right) = \frac{t}{25} + C$ 1 When t = 0, G = 0, so $C = -\ln 25k$ 1 $25k - G = 25ke^{-t/25}$ $G = 25k \left(1 - e^{-t/25}\right)$ 1 When t = 5, G = 0.6. Therefore (b) $0.6 = 25k(1 - e^{-0.2})$ 1 $k = 0.6/(25(1 - e^{-0.2})) \approx 0.132$ 1 When t = 10(c) $G \approx 3.3(1 - e^{-0.4})$ 1 The claim seems to be justified, 1 1 As $t \rightarrow \infty$, $G \rightarrow 25k \approx 3.3$ metres (d) 1 so the limit is 3.6 metres. Alternative using an Integrating Factor: $\frac{dG}{dt} = \frac{25k - G}{25}$ (a) $\frac{dG}{dt} + \frac{G}{25} = k$ 1 IF = $e^{\int \frac{1}{25} dt}$ = $e^{t/25}$ $\frac{d}{dt}\left(e^{t/25}G\right) = ke^{t/25}$ $e^{t/25}G = k \int e^{t/25}dt$ $= k \left(25e^{t/25}\right) + C'$ $G = 25k + C'e^{-t/25}$ 1

 $G = 25k(1 - e^{-t/25})$

1

1

When t = 0, G = 0, so C' = -25k

15. Equating the x-coordinates: $2 + s = -1 - 2t \implies s + 2t = -3$ (1) Equating the y-coordinates: $-s = t \implies s = -t$ 1 Substituting in (1): $-t + 2t = -3 \implies t = -3 \implies s = 3$. 1 Putting s = 3 in L_1 gives (5, -3, -1) and t = -3 in L_2 , (5, -3, -7). As the z coordinates differ, L_1 and L_2 do not intersect. 1 Directions of L_1 and L_2 are: $\mathbf{i} - \mathbf{j} - \mathbf{k}$ and $-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$. The vector product of these gives the direction of L_3 . $(\mathbf{i} - \mathbf{j} - \mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & -1 \\ -2 & 1 & 3 \end{vmatrix} = -2\mathbf{i} - \mathbf{j} - \mathbf{k}$ 1M,1 Equation of L_3 : $\mathbf{r} = \mathbf{i} + \mathbf{j} + 3\mathbf{k} + (-2\mathbf{i} - \mathbf{j} - \mathbf{k})u$ $= (1 - 2u)\mathbf{i} + (1 - u)\mathbf{j} + (3 - u)\mathbf{k}$ Hence L_3 is given by x = 1 - 2u, y = 1 - u, z = 3 - u. 1 (c) Solving the x and y coordinates of L_3 and L_2 : -1 - 2t = 1 - 2u and t = 1 - u \Rightarrow -1 = 3 - 4u \Rightarrow u = 1 and t = 0 1 The point of intersection, Q, is (-1, 0, 2) since 2 + 3t = 2 and 3 - u = 2. 1 L_1 is x = 2 + s, y = -s, z = 2 - s. When x = 1, s = -1 and hence y = 1 and z = 3, i.e. P lies on L_1 . 1 $PQ = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}.$ (d) 1 **16.** $\tan^{-1} 2x$ has horizontal asymptotes at $y = \pm \frac{\pi}{2}$. (a) 1,1 Area = $\int_{0}^{1/2} \tan^{-1} 2x \, dx$ (b) 1 $=\int_{0}^{1/2} (\tan^{-1} 2x) \times 1 dx$ 1 $= \left[\tan^{-1} 2x \int 1.dx - \int \frac{2}{1 + 4x^2} \cdot x \, dx \right]_0^{1/2}$ $= \left[x \tan^{-1} 2x - \frac{1}{4} \int \frac{8x}{1 + 4x^2} dx \right]_0^{1/2}$ $= \left[x \tan^{-1} 2x - \frac{1}{4} \ln (1 + 4x^2) \right]_0^{1/2}$ 2E1 $= \left[\frac{1}{2} \tan^{-1} 1 - \frac{1}{4} \ln 2 \right] - \left[0 - 0 \right]$ $=\frac{\pi}{8}-\frac{1}{4}\ln 2$ 1 (c) 2E1 $\int_{-1/2}^{1/2} |f(x)| dx = 2 \int_{0}^{1/2} \tan^{-1} 2x \, dx$ $=\frac{\pi}{4}-\frac{1}{2}\ln 2$

[END OF MARKING INSTRUCTIONS]

1

9 E II 2

6